» Articles » PMID: 28392603

Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers

Overview
Journal Macromolecules
Date 2017 Apr 11
PMID 28392603
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter larger than the entanglement spacing is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as exceeds and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with > in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient decreases with increasing much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.

Citing Articles

Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations.

Yu B, Liang H, Nealey P, Tirrell M, Rumyantsev A, de Pablo J Macromolecules. 2023; 56(18):7256-7270.

PMID: 37781214 PMC: 10538443. DOI: 10.1021/acs.macromol.3c01079.


Diffusion of Thin Nanorods in Polymer Melts.

Wang J, OConnor T, Grest G, Zheng Y, Rubinstein M, Ge T Macromolecules. 2022; 54(15):7051-7059.

PMID: 35935463 PMC: 9347642. DOI: 10.1021/acs.macromol.1c00989.


Effects of Tethered Polymers on Dynamics of Nanoparticles in Unentangled Polymer Melts.

Ge T, Rubinstein M, Grest G Macromolecules. 2021; 53(16):6898-6906.

PMID: 34366485 PMC: 8341439. DOI: 10.1021/acs.macromol.9b01921.


Comparing ion transport in ionic liquids and polymerized ionic liquids.

Xiao W, Yang Q, Zhu S Sci Rep. 2020; 10(1):7825.

PMID: 32385380 PMC: 7210282. DOI: 10.1038/s41598-020-64689-8.


Determine Mesh Size through Monomer Mean-Square Displacement.

Hou J Polymers (Basel). 2019; 11(9).

PMID: 31461920 PMC: 6780637. DOI: 10.3390/polym11091405.


References
1.
Goossen S, Bras A, Krutyeva M, Sharp M, Falus P, Feoktystov A . Molecular scale dynamics of large ring polymers. Phys Rev Lett. 2014; 113(16):168302. DOI: 10.1103/PhysRevLett.113.168302. View

2.
Cai L, Panyukov S, Rubinstein M . Mobility of Nonsticky Nanoparticles in Polymer Liquids. Macromolecules. 2011; 44(19):7853-7863. PMC: 3205984. DOI: 10.1021/ma201583q. View

3.
Grest G . Communication: Polymer entanglement dynamics: Role of attractive interactions. J Chem Phys. 2016; 145(14):141101. DOI: 10.1063/1.4964617. View

4.
Nahali N, Rosa A . Density effects in entangled solutions of linear and ring polymers. J Phys Condens Matter. 2016; 28(6):065101. DOI: 10.1088/0953-8984/28/6/065101. View

5.
Ge T, Robbins M, Perahia D, Grest G . Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength. Phys Rev E Stat Nonlin Soft Matter Phys. 2014; 90(1):012602. DOI: 10.1103/PhysRevE.90.012602. View