» Articles » PMID: 29481209

Nanorheology of Entangled Polymer Melts

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2018 Feb 27
PMID 29481209
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G_{GSE}(t) from the mean square displacement of NPs. G_{GSE}(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G_{GSE}(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G_{GSE}(t) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G_{GSE}(t) approaches G(t) of the ring melt with no entanglement plateau.

Citing Articles

Diffusion of Thin Nanorods in Polymer Melts.

Wang J, OConnor T, Grest G, Zheng Y, Rubinstein M, Ge T Macromolecules. 2022; 54(15):7051-7059.

PMID: 35935463 PMC: 9347642. DOI: 10.1021/acs.macromol.1c00989.


Effects of Tethered Polymers on Dynamics of Nanoparticles in Unentangled Polymer Melts.

Ge T, Rubinstein M, Grest G Macromolecules. 2021; 53(16):6898-6906.

PMID: 34366485 PMC: 8341439. DOI: 10.1021/acs.macromol.9b01921.


Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles.

Power A, Remediakis I, Harmandaris V Polymers (Basel). 2021; 13(4).

PMID: 33673125 PMC: 7918087. DOI: 10.3390/polym13040541.


The Longitudinal Superdiffusive Motion of Block Copolymer in a Tight Nanopore.

Nowicki W Polymers (Basel). 2020; 12(12).

PMID: 33302399 PMC: 7762597. DOI: 10.3390/polym12122931.


Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity.

Knoff D, Szczublewski H, Altamirano D, Cortes K, Kim M Macromolecules. 2020; 53(9):3464-3471.

PMID: 32601508 PMC: 7323958. DOI: 10.1021/acs.macromol.0c00514.


References
1.
Priezjev N, Troian S . Molecular origin and dynamic behavior of slip in sheared polymer films. Phys Rev Lett. 2004; 92(1):018302. DOI: 10.1103/PhysRevLett.92.018302. View

2.
Kalathi J, Yamamoto U, Schweizer K, Grest G, Kumar S . Nanoparticle diffusion in polymer nanocomposites. Phys Rev Lett. 2014; 112(10):108301. DOI: 10.1103/PhysRevLett.112.108301. View

3.
Karim M, Kohale S, Indei T, Schieber J, Khare R . Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations. Phys Rev E Stat Nonlin Soft Matter Phys. 2012; 86(5 Pt 1):051501. DOI: 10.1103/PhysRevE.86.051501. View

4.
Balazs A, Emrick T, Russell T . Nanoparticle polymer composites: where two small worlds meet. Science. 2006; 314(5802):1107-10. DOI: 10.1126/science.1130557. View

5.
Halverson J, Lee W, Grest G, Grosberg A, Kremer K . Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J Chem Phys. 2011; 134(20):204904. DOI: 10.1063/1.3587137. View