» Articles » PMID: 28387712

A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis

Overview
Journal Proteomes
Date 2017 Apr 8
PMID 28387712
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O'Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single 'spots' in a polyacrylamide gel, allowing the quantitation of changes in a proteoform's abundance to ascertain changes in an organism's phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the 'Top-Down'. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O'Farrell's paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism's proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer.

Citing Articles

Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience.

Coorssen J, Padula M Proteomes. 2024; 12(2).

PMID: 38651373 PMC: 11036260. DOI: 10.3390/proteomes12020014.


Study of β-transferrin and β-transferrin using microprobe-capture in-emitter elution and high-resolution mass spectrometry.

Luo R, Pfaffroth C, Yang S, Hoang K, Yeung P, Zehnder J Sci Rep. 2023; 13(1):14974.

PMID: 37696850 PMC: 10495423. DOI: 10.1038/s41598-023-42064-7.


Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles.

Dowling P, Gargan S, Swandulla D, Ohlendieck K Int J Mol Sci. 2023; 24(3).

PMID: 36768735 PMC: 9916839. DOI: 10.3390/ijms24032415.


Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice.

Punetha A, Kotiya D Proteomes. 2023; 11(1).

PMID: 36648960 PMC: 9844371. DOI: 10.3390/proteomes11010002.


Proteomics in Inherited Metabolic Disorders.

Chantada-Vazquez M, Bravo S, Barbosa-Gouveia S, Alvarez J, Couce M Int J Mol Sci. 2022; 23(23).

PMID: 36499071 PMC: 9740208. DOI: 10.3390/ijms232314744.


References
1.
Ayala A, Parrado J, Machado A . Use of Rotofor preparative isoelectrofocusing cell in protein purification procedure. Appl Biochem Biotechnol. 1998; 69(1):11-6. DOI: 10.1007/BF02786017. View

2.
Ezkurdia I, Vazquez J, Valencia A, Tress M . Analyzing the first drafts of the human proteome. J Proteome Res. 2014; 13(8):3854-5. PMC: 4334283. DOI: 10.1021/pr500572z. View

3.
Patterson S, Aebersold R . Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995; 16(10):1791-814. DOI: 10.1002/elps.11501601299. View

4.
Deutscher A, Jenkins C, Minion F, Seymour L, Padula M, Dixon N . Repeat regions R1 and R2 in the P97 paralogue Mhp271 of Mycoplasma hyopneumoniae bind heparin, fibronectin and porcine cilia. Mol Microbiol. 2010; 78(2):444-58. DOI: 10.1111/j.1365-2958.2010.07345.x. View

5.
Issaq H, Conrads T, Janini G, Veenstra T . Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis. 2002; 23(17):3048-61. DOI: 10.1002/1522-2683(200209)23:17<3048::AID-ELPS3048>3.0.CO;2-L. View