» Articles » PMID: 28382709

Computational Prediction of the Optimal Oligomeric State for Membrane-inserted β-barrels of Protegrin-1 and Related Mutants

Overview
Journal J Pept Sci
Specialty Biochemistry
Date 2017 Apr 7
PMID 28382709
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Protegrin-1 is a widely studied 18-residue β-hairpin antimicrobial peptide. Evidence suggests that it acts via a β-barrel pore formation mechanism, but the exact number of peptides comprising the pore state is unknown. In this study, we performed molecular dynamics simulations of β-barrels of protegrin and three related mutants (v14v16l, v14v16a, and r4n) in NCNC parallel topology in implicit membrane pores of varying radius and curvature for oligomeric numbers 6-14. We then identified the optimal pore radius and curvature values for all constructs and determined the total effective energy and the translational and rotational entropic losses. These, along with an estimate of membrane deformation free energy from experimental line tension values, provided an estimate of the overall energetics of formation of each pore state. The results indicated that oligomeric numbers 7-13 are generally stable, allowing the possibility of a heterogeneous pore state. The optimal oligomeric state for protegrin is the nonamer, shifting to higher numbers for the mutants. Protegrin, v14v16l, and r4n are stable as membrane-inserted β-barrels, but v14v16a seems much less so because of its decreased hydrophobicity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

Citing Articles

CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.

Hwang W, Austin S, Blondel A, Boittier E, Boresch S, Buck M J Phys Chem B. 2024; 128(41):9976-10042.

PMID: 39303207 PMC: 11492285. DOI: 10.1021/acs.jpcb.4c04100.


Experimental and Computational Characterization of Oxidized and Reduced Protegrin Pores in Lipid Bilayers.

Rodnin M, Vasquez-Montes V, Nepal B, Ladokhin A, Lazaridis T J Membr Biol. 2020; 253(3):287-298.

PMID: 32500172 PMC: 7360341. DOI: 10.1007/s00232-020-00124-3.


Insights into Membrane Translocation of Protegrin Antimicrobial Peptides by Multistep Molecular Dynamics Simulations.

Lai P, Kaznessis Y ACS Omega. 2018; 3(6):6056-6065.

PMID: 29978143 PMC: 6026836. DOI: 10.1021/acsomega.8b00483.


Transmembrane Pore Structures of β-Hairpin Antimicrobial Peptides by All-Atom Simulations.

Lipkin R, Pino-Angeles A, Lazaridis T J Phys Chem B. 2017; 121(39):9126-9140.

PMID: 28879767 PMC: 5686775. DOI: 10.1021/acs.jpcb.7b06591.

References
1.
Jang H, Ma B, Lal R, Nussinov R . Models of toxic beta-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic alzheimer beta-amyloid ion channels. Biophys J. 2008; 95(10):4631-42. PMC: 2576390. DOI: 10.1529/biophysj.108.134551. View

2.
Jang H, Arce F, Ramachandran S, Capone R, Lal R, Nussinov R . Structural convergence among diverse, toxic beta-sheet ion channels. J Phys Chem B. 2010; 114(29):9445-51. PMC: 2908347. DOI: 10.1021/jp104073k. View

3.
Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K . Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997; 1327(1):119-30. DOI: 10.1016/s0005-2736(97)00051-5. View

4.
Lazaridis T . Structural Determinants of Transmembrane β-Barrels. J Chem Theory Comput. 2015; 1(4):716-22. DOI: 10.1021/ct050055x. View

5.
Wade D, Boman A, Wahlin B, Drain C, Andreu D, Boman H . All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A. 1990; 87(12):4761-5. PMC: 54197. DOI: 10.1073/pnas.87.12.4761. View