» Articles » PMID: 28366764

In Vivo Excision of HIV-1 Provirus by SaCas9 and Multiplex Single-Guide RNAs in Animal Models

Overview
Journal Mol Ther
Publisher Cell Press
Date 2017 Apr 4
PMID 28366764
Citations 154
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.

Citing Articles

Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication.

Borrajo A Life (Basel). 2025; 15(2).

PMID: 40003685 PMC: 11856976. DOI: 10.3390/life15020276.


Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV.

Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C Drug Deliv Transl Res. 2025; .

PMID: 39833468 DOI: 10.1007/s13346-025-01788-x.


Enhancing broadly neutralising antibody suppression of HIV by immune modulation and vaccination.

Nel C, Frater J Front Immunol. 2024; 15:1478703.

PMID: 39575236 PMC: 11578998. DOI: 10.3389/fimmu.2024.1478703.


A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing.

Stevens C, Carmichael J, Watkinson R, Kowdle S, Reis R, Hamane K J Virol. 2024; 98(12):e0083224.

PMID: 39494910 PMC: 11650993. DOI: 10.1128/jvi.00832-24.


Versatile plant genome engineering using anti-CRISPR-Cas12a systems.

He Y, Liu S, Chen L, Pu D, Zhong Z, Xu T Sci China Life Sci. 2024; 67(12):2730-2745.

PMID: 39158766 DOI: 10.1007/s11427-024-2704-7.


References
1.
Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J . Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett. 2016; 38(6):919-29. PMC: 4853464. DOI: 10.1007/s10529-016-2064-9. View

2.
Wright A, Sternberg S, Taylor D, Staahl B, Bardales J, Kornfeld J . Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. 2015; 112(10):2984-9. PMC: 4364227. DOI: 10.1073/pnas.1501698112. View

3.
Kim D, Kim S, Kim S, Park J, Kim J . Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 2016; 26(3):406-15. PMC: 4772022. DOI: 10.1101/gr.199588.115. View

4.
Denton P, Olesen R, Choudhary S, Archin N, Wahl A, Swanson M . Generation of HIV latency in humanized BLT mice. J Virol. 2011; 86(1):630-4. PMC: 3255928. DOI: 10.1128/JVI.06120-11. View

5.
Nissim L, Perli S, Fridkin A, Perez-Pinera P, Lu T . Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell. 2014; 54(4):698-710. PMC: 4077618. DOI: 10.1016/j.molcel.2014.04.022. View