Origin and Future of Plasmonic Optical Tweezers
Overview
Authors
Affiliations
Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field.
Oktafiani F, Chen J, Lee P Nanoscale Adv. 2023; 5(2):378-384.
PMID: 36756260 PMC: 9846437. DOI: 10.1039/d2na00670g.
Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam.
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G IEEE Trans Ultrason Ferroelectr Freq Control. 2022; 69(6):1889-1897.
PMID: 35468061 PMC: 9753557. DOI: 10.1109/TUFFC.2022.3170074.
Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications.
Peng X, Kotnala A, Bangalore Rajeeva B, Wang M, Yao K, Bhatt N Adv Opt Mater. 2021; 9(13).
PMID: 34434691 PMC: 8382230. DOI: 10.1002/adom.202100050.
Plasmonic tweezers: for nanoscale optical trapping and beyond.
Zhang Y, Min C, Dou X, Wang X, Urbach H, Somekh M Light Sci Appl. 2021; 10(1):59.
PMID: 33731693 PMC: 7969631. DOI: 10.1038/s41377-021-00474-0.
Optical Tweezers Exploring Neuroscience.
Lenton I, Scott E, Rubinsztein-Dunlop H, Favre-Bulle I Front Bioeng Biotechnol. 2020; 8:602797.
PMID: 33330435 PMC: 7732537. DOI: 10.3389/fbioe.2020.602797.