Ciarlo A, Ciriza D, Selin M, Marago O, Sasso A, Pesce G
Nanophotonics. 2024; 13(17):3017-3035.
PMID: 39634937
PMC: 11502085.
DOI: 10.1515/nanoph-2024-0013.
Yang S, Hong C, Zhu G, Anyika T, Hong I, Ndukaife J
Adv Phys X. 2024; 9(1).
PMID: 39554474
PMC: 11563312.
DOI: 10.1080/23746149.2024.2416178.
Riccardi M, Martin O
Chem Rev. 2023; .
PMID: 36719985
PMC: 9951227.
DOI: 10.1021/acs.chemrev.2c00576.
Takemura K
Biosensors (Basel). 2021; 11(8).
PMID: 34436053
PMC: 8391291.
DOI: 10.3390/bios11080250.
Holler C, Schnoering G, Eghlidi H, Suomalainen M, Greber U, Poulikakos D
Sci Adv. 2021; 7(27).
PMID: 34215575
PMC: 11057703.
DOI: 10.1126/sciadv.abd8758.
Switchable Assembly and Guidance of Colloidal Particles on an All-Dielectric One-Dimensional Photonic Crystal.
Lu F, Kuai Y, Chen J, Tang X, Xiang Y, Liu Y
Phys Rev Appl. 2021; 13(1).
PMID: 34113692
PMC: 8189027.
DOI: 10.1103/physrevapplied.13.014020.
Plasmonic tweezers: for nanoscale optical trapping and beyond.
Zhang Y, Min C, Dou X, Wang X, Urbach H, Somekh M
Light Sci Appl. 2021; 10(1):59.
PMID: 33731693
PMC: 7969631.
DOI: 10.1038/s41377-021-00474-0.
Gold cauldrons as efficient candidates for plasmonic tweezers.
Khosravi M, Aqhili A, Vasini S, Khosravi M, Darbari S, Hajizadeh F
Sci Rep. 2020; 10(1):19356.
PMID: 33168879
PMC: 7652890.
DOI: 10.1038/s41598-020-76409-3.
High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
Killian J, Inman J, Wang M
ACS Nano. 2018; 12(12):11963-11974.
PMID: 30457331
PMC: 6857636.
DOI: 10.1021/acsnano.8b03679.
Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects.
Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T
Light Sci Appl. 2018; 6(9):e17039.
PMID: 30167291
PMC: 6062326.
DOI: 10.1038/lsa.2017.39.
Plasmon-assisted optical trapping and anti-trapping.
Ivinskaya A, Petrov M, Bogdanov A, Shishkin I, Ginzburg P, Shalin A
Light Sci Appl. 2018; 6(5):e16258.
PMID: 30167251
PMC: 6062188.
DOI: 10.1038/lsa.2016.258.
Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes.
Samadi M, Darbari S, Kazem Moravvej-Farshi M
Sci Rep. 2017; 7(1):14533.
PMID: 29109398
PMC: 5674073.
DOI: 10.1038/s41598-017-14912-w.
Elliptical orbits of microspheres in an evanescent field.
Liu L, Kheifets S, Ginis V, Di Donato A, Capasso F
Proc Natl Acad Sci U S A. 2017; 114(42):11087-11091.
PMID: 28973939
PMC: 5651786.
DOI: 10.1073/pnas.1714953114.
Origin and Future of Plasmonic Optical Tweezers.
Huang J, Yang Y
Nanomaterials (Basel). 2017; 5(2):1048-1065.
PMID: 28347051
PMC: 5312911.
DOI: 10.3390/nano5021048.
Characterization of the near-field and convectional transport behavior of micro and nanoparticles in nanoscale plasmonic optical lattices.
Yang T, Yossifon G, Yang Y
Biomicrofluidics. 2016; 10(3):034102.
PMID: 27226813
PMC: 4871010.
DOI: 10.1063/1.4948775.
Plasmon enhanced optical tweezers with gold-coated black silicon.
Kotsifaki D, Kandyla M, Lagoudakis P
Sci Rep. 2016; 6:26275.
PMID: 27195446
PMC: 4872531.
DOI: 10.1038/srep26275.
Laser propulsion of nanobullets by adiabatic compression of surface plasmon polaritons.
Folli V, Ruocco G, Conti C
Sci Rep. 2015; 5:17652.
PMID: 26631719
PMC: 4668566.
DOI: 10.1038/srep17652.
Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.
Guan D, Hang Z, Marcet Z, Liu H, Kravchenko I, Chan C
Sci Rep. 2015; 5:16216.
PMID: 26586455
PMC: 4653639.
DOI: 10.1038/srep16216.
Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu Y
Small. 2015; 11(35):4423-44.
PMID: 26140612
PMC: 4856436.
DOI: 10.1002/smll.201500970.
Absolute position total internal reflection microscopy with an optical tweezer.
Liu L, Woolf A, Rodriguez A, Capasso F
Proc Natl Acad Sci U S A. 2014; 111(52):E5609-15.
PMID: 25512542
PMC: 4284537.
DOI: 10.1073/pnas.1422178112.