Szokoli D, Mutschler H
Nucleic Acids Res. 2024; 53(2.
PMID: 39698822
PMC: 11754743.
DOI: 10.1093/nar/gkae1224.
Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O
Genes (Basel). 2022; 13(7).
PMID: 35885919
PMC: 9321910.
DOI: 10.3390/genes13071137.
Omran Q, Fedorova O, Liu T, Pyle A
Nucleic Acids Res. 2022; 50(13):e74.
PMID: 35438748
PMC: 9303364.
DOI: 10.1093/nar/gkac242.
Roth A, Weinberg Z, Vanderschuren K, Murdock M, Breaker R
iScience. 2021; 24(12):103431.
PMID: 34901790
PMC: 8637638.
DOI: 10.1016/j.isci.2021.103431.
LaRoche-Johnston F, Monat C, Verreault E, Cousineau B
Nucleic Acids Res. 2021; 49(12):6996-7010.
PMID: 34157113
PMC: 8266578.
DOI: 10.1093/nar/gkab537.
Exon and protein positioning in a pre-catalytic group II intron RNP primed for splicing.
Liu N, Dong X, Hu C, Zeng J, Wang J, Wang J
Nucleic Acids Res. 2020; 48(19):11185-11198.
PMID: 33021674
PMC: 7641739.
DOI: 10.1093/nar/gkaa773.
Unraveling the role of the enigmatic MatK maturase in chloroplast group IIA intron excision.
Barthet M, Pierpont C, Tavernier E
Plant Direct. 2020; 4(3):e00208.
PMID: 32185246
PMC: 7068846.
DOI: 10.1002/pld3.208.
Transitions between the steps of forward and reverse splicing of group IIC introns.
Smathers C, Robart A
RNA. 2020; 26(5):664-673.
PMID: 32127385
PMC: 7161350.
DOI: 10.1261/rna.075044.120.
DNA cleavage and reverse splicing of ribonucleoprotein particles reconstituted with linear RmInt1 RNA.
Molina-Sanchez M, Toro N
RNA Biol. 2019; 16(7):930-939.
PMID: 30943851
PMC: 6546360.
DOI: 10.1080/15476286.2019.1601379.
Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting.
Qu G, Piazza C, Smith D, Belfort M
Elife. 2018; 7.
PMID: 29905149
PMC: 6003770.
DOI: 10.7554/eLife.34268.
Transcriptome-wide Interrogation of the Functional Intronome by Spliceosome Profiling.
Chen W, Moore J, Ozadam H, Shulha H, Rhind N, Weng Z
Cell. 2018; 173(4):1031-1044.e13.
PMID: 29727662
PMC: 6090549.
DOI: 10.1016/j.cell.2018.03.062.
Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.
Monachello D, Michel F, Costa M
RNA. 2016; 22(3):443-55.
PMID: 26769855
PMC: 4748821.
DOI: 10.1261/rna.054643.115.
Circularization pathway of a bacterial group II intron.
Monat C, Cousineau B
Nucleic Acids Res. 2015; 44(4):1845-53.
PMID: 26673697
PMC: 4770220.
DOI: 10.1093/nar/gkv1381.
Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.
Lambowitz A, Belfort M
Microbiol Spectr. 2015; 3(1):MDNA3-0050-2014.
PMID: 26104554
PMC: 4394904.
DOI: 10.1128/microbiolspec.MDNA3-0050-2014.
The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis.
Gualberto J, Le Ret M, Beator B, Kuhn K
Nucleic Acids Res. 2015; 43(13):6500-10.
PMID: 26048959
PMC: 4513849.
DOI: 10.1093/nar/gkv540.
The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway.
Monat C, Quiroga C, LaRoche-Johnston F, Cousineau B
RNA. 2015; 21(7):1286-93.
PMID: 25956521
PMC: 4478347.
DOI: 10.1261/rna.046367.114.
In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element.
Chillon I, Molina-Sanchez M, Fedorova O, Garcia-Rodriguez F, Martinez-Abarca F, Toro N
RNA. 2014; 20(12):2000-10.
PMID: 25336586
PMC: 4238363.
DOI: 10.1261/rna.047407.114.
Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.
McNeil B, Zimmerly S
RNA. 2014; 20(6):855-66.
PMID: 24751650
PMC: 4024640.
DOI: 10.1261/rna.042440.113.
Principles of ion recognition in RNA: insights from the group II intron structures.
Marcia M, Pyle A
RNA. 2014; 20(4):516-27.
PMID: 24570483
PMC: 3964913.
DOI: 10.1261/rna.043414.113.
Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.
McNeil B, Simon D, Zimmerly S
Nucleic Acids Res. 2013; 42(3):1959-69.
PMID: 24214997
PMC: 3919590.
DOI: 10.1093/nar/gkt1053.