» Articles » PMID: 28301742

Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications

Overview
Publisher Annual Reviews
Specialty Biochemistry
Date 2017 Mar 17
PMID 28301742
Citations 143
Authors
Affiliations
Soon will be listed here.
Abstract

Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and

Citing Articles

Actinorhodopsin: an efficient and robust light-driven proton pump for bionanotechnological applications.

Ayoub N, Djabeur N, Harder D, Jeckelmann J, Ucurum Z, Hirschi S Sci Rep. 2025; 15(1):4054.

PMID: 39900604 PMC: 11790970. DOI: 10.1038/s41598-025-88055-8.


ON-OFF nanopores for optical control of transmembrane ionic communication.

Wang X, Kerckhoffs A, Riexinger J, Cornall M, Langton M, Bayley H Nat Nanotechnol. 2025; .

PMID: 39838209 DOI: 10.1038/s41565-024-01823-x.


Proton reactions: From basic science to biomedical applications.

Bondar A, DeCoursey T Biophys J. 2024; 123(24):E1-E5.

PMID: 39644897 PMC: 11700356. DOI: 10.1016/j.bpj.2024.11.013.


A Detailed View on the (Re)isomerization Dynamics in Microbial Rhodopsins Using Complementary Near-UV and IR Readouts.

Asido M, Lamm G, Lienert J, La Greca M, Kaur J, Mayer A Angew Chem Int Ed Engl. 2024; 64(4):e202416742.

PMID: 39523487 PMC: 11753611. DOI: 10.1002/anie.202416742.


Light-driven anion-pumping rhodopsin with unique cytoplasmic anion-release mechanism.

Ishizuka T, Suzuki K, Konno M, Shibata K, Kawasaki Y, Akiyama H J Biol Chem. 2024; 300(10):107797.

PMID: 39305959 PMC: 11532467. DOI: 10.1016/j.jbc.2024.107797.


References
1.
Inoue K, Kato Y, Kandori H . Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol. 2014; 23(2):91-8. DOI: 10.1016/j.tim.2014.10.009. View

2.
Zhao M, Alleva R, Ma H, Daniel A, Schwartz T . Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res. 2015; 116:15-26. PMC: 4567692. DOI: 10.1016/j.eplepsyres.2015.06.010. View

3.
Lorenz-Fonfria V, Bamann C, Resler T, Schlesinger R, Bamberg E, Heberle J . Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proc Natl Acad Sci U S A. 2015; 112(43):E5796-804. PMC: 4629336. DOI: 10.1073/pnas.1511462112. View

4.
Berndt A, Lee S, Wietek J, Ramakrishnan C, Steinberg E, Rashid A . Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci U S A. 2015; 113(4):822-9. PMC: 4743797. DOI: 10.1073/pnas.1523341113. View

5.
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J . Conformational changes of channelrhodopsin-2. J Am Chem Soc. 2009; 131(21):7313-9. DOI: 10.1021/ja8084274. View