» Articles » PMID: 28289078

Delivery is Key: Lessons Learnt from Developing Splice-switching Antisense Therapies

Abstract

The use of splice-switching antisense therapy is highly promising, with a wealth of pre-clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre-clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.

Citing Articles

Targeting Drug Delivery System to Skeletal Muscles: A Comprehensive Review of Different Approaches.

Li X, Xu J, Yao S, Zhang N, Zhang B, Zhang Z J Cachexia Sarcopenia Muscle. 2025; 16(1):e13691.

PMID: 39910928 PMC: 11799587. DOI: 10.1002/jcsm.13691.


Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

Weiss S, Decker S, Kugler C, Gomez L, Fasching H, Benisch D ACS Appl Mater Interfaces. 2025; 17(6):9000-9018.

PMID: 39873730 PMC: 11826512. DOI: 10.1021/acsami.4c19340.


Synthesis of New Polyfluoro Oligonucleotides via Staudinger Reaction.

Klabenkova K, Zakhryamina A, Burakova E, Bizyaev S, Fokina A, Stetsenko D Int J Mol Sci. 2025; 26(1.

PMID: 39796153 PMC: 11719919. DOI: 10.3390/ijms26010300.


Employing splice-switching oligonucleotides and AAVrh74.U7 snRNA to target insulin receptor splicing and cancer hallmarks in osteosarcoma.

Khurshid S, Venkataramany A, Montes M, Kipp J, Roberts R, Wein N Mol Ther Oncol. 2024; 32(4):200908.

PMID: 39720325 PMC: 11666956. DOI: 10.1016/j.omton.2024.200908.


Controversies and insights into PTBP1-related astrocyte-neuron transdifferentiation: neuronal regeneration strategies for Parkinson's and Alzheimer's disease.

McDowall S, Bagda V, Hodgetts S, Mastaglia F, Li D Transl Neurodegener. 2024; 13(1):59.

PMID: 39627843 PMC: 11613593. DOI: 10.1186/s40035-024-00450-9.


References
1.
Heemskerk H, de Winter C, van Kuik P, Heuvelmans N, Sabatelli P, Rimessi P . Preclinical PK and PD studies on 2'-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther. 2010; 18(6):1210-7. PMC: 2889733. DOI: 10.1038/mt.2010.72. View

2.
Burdick A, Sciabola S, Mantena S, Hollingshead B, Stanton R, Warneke J . Sequence motifs associated with hepatotoxicity of locked nucleic acid--modified antisense oligonucleotides. Nucleic Acids Res. 2014; 42(8):4882-91. PMC: 4005641. DOI: 10.1093/nar/gku142. View

3.
Lehto T, Ezzat K, Wood M, El Andaloussi S . Peptides for nucleic acid delivery. Adv Drug Deliv Rev. 2016; 106(Pt A):172-182. DOI: 10.1016/j.addr.2016.06.008. View

4.
Vulin A, Barthelemy I, Goyenvalle A, Thibaud J, Beley C, Griffith G . Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther. 2012; 20(11):2120-33. PMC: 3498802. DOI: 10.1038/mt.2012.181. View

5.
Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Narayanannair Jayaprakash K . Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010; 18(7):1357-64. PMC: 2911264. DOI: 10.1038/mt.2010.85. View