» Articles » PMID: 28288978

Mff-Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvasculature Ischemia/Reperfusion Injury Via Induction of MROS-Mediated Cardiolipin Oxidation and HK2/VDAC1 Disassociation-Involved MPTP Opening

Overview
Date 2017 Mar 15
PMID 28288978
Citations 147
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemia/reperfusion injury induces cardiac microcirculation collapse.

Methods And Results: In wild-type mice, mitochondrial fission factor (Mff) expression increased in response to acute microvascular ischemia/reperfusion injury. Compared with wild-type mice, homozygous Mff-deficient (Mff) mice exhibited a smaller infarcted area, restored cardiac function, improved blood flow, and reduced microcirculation perfusion defects. Histopathology analysis demonstrated that cardiac microcirculation endothelial cells (CMECs) in Mff mice had an intact endothelial barrier, recovered phospho-endothelial nitric oxide synthase production, opened lumen, undivided mitochondrial structures, and less CMEC death. In vitro, Mff-deficient CMECs (derived from Mff mice or Mff small interfering RNA-treated) demonstrated less mitochondrial fission and mitochondrial-dependent apoptosis compared with cells derived from wild-type mice. The loss of Mff inhibited mitochondrial permeability transition pore opening via blocking the oligomerization of voltage-dependent anion channel 1 and subsequent hexokinase 2 separation from mitochondria. Moreover, Mff deficiency reduced the cyt-c leakage into the cytoplasm by alleviating cardiolipin oxidation resulting from damage to the electron transport chain complexes and mitochondrial reactive oxygen species overproduction.

Conclusions: This evidence clearly illustrates that microcirculatory ischemia/reperfusion injury can be attributed to Mff-dependent mitochondrial fission via voltage-dependent anion channel 1/hexokinase 2-mediated mitochondrial permeability transition pore opening and mitochondrial reactive oxygen species/cardiolipin involved cyt-c release.

Citing Articles

Mitochondrial apoptosis in response to cardiac ischemia-reperfusion injury.

Wang K, Zhu Q, Liu W, Wang L, Li X, Zhao C J Transl Med. 2025; 23(1):125.

PMID: 39875870 PMC: 11773821. DOI: 10.1186/s12967-025-06136-8.


Nuclear receptor 4A1 Regulates Mitochondrial Homeostasis in Cardiac Post-Ischemic Injury by Controlling Mitochondrial Fission 1 Protein-Mediated Fragmentation and Parkin-Dependent Mitophagy.

Ye H, Lin J, Zhang H, Wang J, Fu Y, Zeng Z Int J Biol Sci. 2025; 21(1):400-414.

PMID: 39744420 PMC: 11667825. DOI: 10.7150/ijbs.104680.


Receptor-Interacting Protein Kinase 3-Mediated Modulation of Endothelial Cell Necroptosis and Mitochondrial Dysfunction through AMPK/Drp1 Signaling Pathway: Insights into the Pathophysiological Mechanisms of Lipopolysaccharide-Induced Acute Lung....

Zhao Z, Zhu P, Lou Y, Hou R, Sun H, Du Y Int J Med Sci. 2025; 22(1):71-86.

PMID: 39744171 PMC: 11659830. DOI: 10.7150/ijms.104932.


Diltiazem Hydrochloride Protects Against Myocardial Ischemia/Reperfusion Injury in a BNIP3L/NIX-Mediated Mitophagy Manner.

Zhou X, Lu Q, Wang Q, Chu W, Huang J, Yu J J Inflamm Res. 2024; 17:8905-8919.

PMID: 39575347 PMC: 11579144. DOI: 10.2147/JIR.S493037.


BuyangHuanwu Decoction alleviates Endothelial Cell Apoptosis and Coronary Microvascular Dysfunction via Regulation of the MAPKK4/p38 Signaling Axis.

Chang X, Wu D, Gao X, Lin J, Tan Y, Wang J Int J Med Sci. 2024; 21(13):2464-2479.

PMID: 39439466 PMC: 11492876. DOI: 10.7150/ijms.98183.


References
1.
Otera H, Wang C, Cleland M, Setoguchi K, Yokota S, Youle R . Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 2010; 191(6):1141-58. PMC: 3002033. DOI: 10.1083/jcb.201007152. View

2.
Dromparis P, Michelakis E . Mitochondria in vascular health and disease. Annu Rev Physiol. 2012; 75:95-126. DOI: 10.1146/annurev-physiol-030212-183804. View

3.
Kloner R, GANOTE C, Jennings R . The "no-reflow" phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974; 54(6):1496-508. PMC: 301706. DOI: 10.1172/JCI107898. View

4.
Pastorino J, Hoek J . Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr. 2008; 40(3):171-82. PMC: 2662512. DOI: 10.1007/s10863-008-9148-8. View

5.
Dauber I, Vanbenthuysen K, McMurtry I, Wheeler G, Lesnefsky E, Horwitz L . Functional coronary microvascular injury evident as increased permeability due to brief ischemia and reperfusion. Circ Res. 1990; 66(4):986-98. DOI: 10.1161/01.res.66.4.986. View