Oishi C, Kaptanoglu A, Kutz J, Brunton S
R Soc Open Sci. 2024; 11(10):240995.
PMID: 39469133
PMC: 11515135.
DOI: 10.1098/rsos.240995.
Zhang M, Wang X, Tang S
PLoS Comput Biol. 2024; 20(9):e1012499.
PMID: 39331695
PMC: 11463784.
DOI: 10.1371/journal.pcbi.1012499.
Yu R, Wang R
Proc Natl Acad Sci U S A. 2024; 121(27):e2311808121.
PMID: 38913886
PMC: 11228478.
DOI: 10.1073/pnas.2311808121.
Rubaiyat A, Thai D, Nichols J, Hutchinson M, Wallen S, Naify C
Comput Methods Appl Mech Eng. 2024; 422.
PMID: 38352168
PMC: 10861186.
DOI: 10.1016/j.cma.2024.116822.
Messenger D, Dallanese E, Bortz D
Proc Mach Learn Res. 2024; 190:241-256.
PMID: 38264277
PMC: 10805452.
Physically informed data-driven modeling of active nematics.
Golden M, Grigoriev R, Nambisan J, Fernandez-Nieves A
Sci Adv. 2023; 9(27):eabq6120.
PMID: 37406118
PMC: 10321743.
DOI: 10.1126/sciadv.abq6120.
Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion.
Xu H, Zeng J, Zhang D
Research (Wash D C). 2023; 6:0147.
PMID: 37214196
PMC: 10198462.
DOI: 10.34133/research.0147.
Estimating and Assessing Differential Equation Models with Time-Course Data.
Wong S, Yang S, Kou S
J Phys Chem B. 2023; 127(11):2362-2374.
PMID: 36893480
PMC: 10041644.
DOI: 10.1021/acs.jpcb.2c08932.
Connections Between Numerical Algorithms for PDEs and Neural Networks.
Alt T, Schrader K, Augustin M, Peter P, Weickert J
J Math Imaging Vis. 2023; 65(1):185-208.
PMID: 36721706
PMC: 9883332.
DOI: 10.1007/s10851-022-01106-x.
Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction.
Li X, Liu X, Deng X, Fan Y
Biomedicines. 2022; 10(9).
PMID: 36140258
PMC: 9495955.
DOI: 10.3390/biomedicines10092157.
Designing rotationally invariant neural networks from PDEs and variational methods.
Alt T, Schrader K, Weickert J, Peter P, Augustin M
Res Math Sci. 2022; 9(3):52.
PMID: 35941960
PMC: 9352643.
DOI: 10.1007/s40687-022-00339-x.
Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization.
Lejarza F, Baldea M
Sci Rep. 2022; 12(1):11836.
PMID: 35821394
PMC: 9276674.
DOI: 10.1038/s41598-022-13644-w.
Stability selection enables robust learning of differential equations from limited noisy data.
Maddu S, Cheeseman B, Sbalzarini I, Muller C
Proc Math Phys Eng Sci. 2022; 478(2262):20210916.
PMID: 35756878
PMC: 9199075.
DOI: 10.1098/rspa.2021.0916.
Autonomous learning of nonlocal stochastic neuron dynamics.
Maltba T, Zhao H, Tartakovsky D
Cogn Neurodyn. 2022; 16(3):683-705.
PMID: 35603048
PMC: 9120337.
DOI: 10.1007/s11571-021-09731-9.
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control.
Fasel U, Kutz J, Brunton B, Brunton S
Proc Math Phys Eng Sci. 2022; 478(2260):20210904.
PMID: 35450025
PMC: 9006119.
DOI: 10.1098/rspa.2021.0904.
Data-driven discovery of Green's functions with human-understandable deep learning.
Boulle N, Earls C, Townsend A
Sci Rep. 2022; 12(1):4824.
PMID: 35319007
PMC: 8940897.
DOI: 10.1038/s41598-022-08745-5.
Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning.
Kurz D, Sanchez C, Axenie C
Front Artif Intell. 2021; 4:713690.
PMID: 34901835
PMC: 8655230.
DOI: 10.3389/frai.2021.713690.
WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
Messenger D, Bortz D
J Comput Phys. 2021; 443.
PMID: 34744183
PMC: 8570254.
DOI: 10.1016/j.jcp.2021.110525.
Sparse nonlinear models of chaotic electroconvection.
Guan Y, Brunton S, Novosselov I
R Soc Open Sci. 2021; 8(8):202367.
PMID: 34430040
PMC: 8355675.
DOI: 10.1098/rsos.202367.
Modeling and prediction of the transmission dynamics of COVID-19 based on the SINDy-LM method.
Jiang Y, Xiong X, Zhang S, Wang J, Li J, Du L
Nonlinear Dyn. 2021; 105(3):2775-2794.
PMID: 34312574
PMC: 8295551.
DOI: 10.1007/s11071-021-06707-6.