» Articles » PMID: 28241015

A Concept for Holistic Whole Body MRI Data Analysis, Imiomics

Overview
Journal PLoS One
Date 2017 Feb 28
PMID 28241015
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: To present and evaluate a whole-body image analysis concept, Imiomics (imaging-omics) and an image registration method that enables Imiomics analyses by deforming all image data to a common coordinate system, so that the information in each voxel can be compared between persons or within a person over time and integrated with non-imaging data.

Methods: The presented image registration method utilizes relative elasticity constraints of different tissue obtained from whole-body water-fat MRI. The registration method is evaluated by inverse consistency and Dice coefficients and the Imiomics concept is evaluated by example analyses of importance for metabolic research using non-imaging parameters where we know what to expect. The example analyses include whole body imaging atlas creation, anomaly detection, and cross-sectional and longitudinal analysis.

Results: The image registration method evaluation on 128 subjects shows low inverse consistency errors and high Dice coefficients. Also, the statistical atlas with fat content intensity values shows low standard deviation values, indicating successful deformations to the common coordinate system. The example analyses show expected associations and correlations which agree with explicit measurements, and thereby illustrate the usefulness of the proposed Imiomics concept.

Conclusions: The registration method is well-suited for Imiomics analyses, which enable analyses of relationships to non-imaging data, e.g. clinical data, in new types of holistic targeted and untargeted big-data analysis.

Citing Articles

Using UK Biobank data to establish population-specific atlases from whole body MRI.

Starck S, Sideri-Lampretsa V, Ritter J, Zimmer V, Braren R, Mueller T Commun Med (Lond). 2024; 4(1):237.

PMID: 39562746 PMC: 11577111. DOI: 10.1038/s43856-024-00670-0.


A detailed analysis of body composition in relation to cardiopulmonary exercise test indices.

Karlsson P, Strand R, Kullberg J, Michaelsson K, Ahlstrom H, Lind L Sci Rep. 2024; 14(1):21633.

PMID: 39285239 PMC: 11405762. DOI: 10.1038/s41598-024-72973-0.


Voxel-wise body composition analysis using image registration of a three-slice CT imaging protocol: methodology and proof-of-concept studies.

Ahmad N, Dahlberg H, Jonsson H, Tarai S, Guggilla R, Strand R Biomed Eng Online. 2024; 23(1):42.

PMID: 38614974 PMC: 11015680. DOI: 10.1186/s12938-024-01235-x.


A whole-body diffusion MRI normal atlas: development, evaluation and initial use.

Sjoholm T, Tarai S, Malmberg F, Strand R, Korenyushkin A, Enblad G Cancer Imaging. 2023; 23(1):87.

PMID: 37710346 PMC: 10503210. DOI: 10.1186/s40644-023-00603-5.


An image registration method for voxel-wise analysis of whole-body oncological PET-CT.

Jonsson H, Ekstrom S, Strand R, Pedersen M, Molin D, Ahlstrom H Sci Rep. 2022; 12(1):18768.

PMID: 36335130 PMC: 9637131. DOI: 10.1038/s41598-022-23361-z.


References
1.
Plis S, Hjelm D, Salakhutdinov R, Allen E, Bockholt H, Long J . Deep learning for neuroimaging: a validation study. Front Neurosci. 2014; 8:229. PMC: 4138493. DOI: 10.3389/fnins.2014.00229. View

2.
Lockhart D, Winzeler E . Genomics, gene expression and DNA arrays. Nature. 2000; 405(6788):827-36. DOI: 10.1038/35015701. View

3.
Baiker M, Staring M, Lowik C, Reiber J, Lelieveldt B . Automated registration of whole-body follow-up MicroCT data of mice. Med Image Comput Comput Assist Interv. 2011; 14(Pt 2):516-23. DOI: 10.1007/978-3-642-23629-7_63. View

4.
Khmelinskii A, Baiker M, Kaijzel E, Chen J, Reiber J, Lelieveldt B . Articulated whole-body atlases for small animal image analysis: construction and applications. Mol Imaging Biol. 2010; 13(5):898-910. PMC: 3179580. DOI: 10.1007/s11307-010-0386-x. View

5.
Kullberg J, Johansson L, Ahlstrom H, Courivaud F, Koken P, Eggers H . Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging. 2009; 30(1):185-93. DOI: 10.1002/jmri.21820. View