» Articles » PMID: 28238725

Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin

Overview
Journal Cell Chem Biol
Publisher Cell Press
Specialty Biochemistry
Date 2017 Feb 28
PMID 28238725
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Fungal polyketide synthases (PKSs) are large, multidomain enzymes that biosynthesize a wide range of natural products. A hallmark of these megasynthases is the iterative use of catalytic domains to extend and modify a series of enzyme-bound intermediates. A subset of these iterative PKSs (iPKSs) contains a C-methyltransferase (CMeT) domain that adds one or more S-adenosylmethionine (SAM)-derived methyl groups to the carbon framework. Neither the basis by which only specific positions on the growing intermediate are methylated ("programming") nor the mechanism of methylation are well understood. Domain dissection and reconstitution of PksCT, the fungal non-reducing PKS (NR-PKS) responsible for the first isolable intermediate in citrinin biosynthesis, demonstrates the role of CMeT-catalyzed methylation in precursor elongation and pentaketide formation. The crystal structure of the S-adenosyl-homocysteine (SAH) coproduct-bound PksCT CMeT domain reveals a two-subdomain organization with a novel N-terminal subdomain characteristic of PKS CMeT domains and provides insights into co-factor and ligand recognition.

Citing Articles

Production of Ochratoxin A and Citrinin and the Expression of Their Biosynthetic Genes from in Liquid Culture.

Sasseville M, Nguyen H, Drouin S, Bahadoor A ACS Omega. 2024; 9(18):20368-20377.

PMID: 38737015 PMC: 11080038. DOI: 10.1021/acsomega.4c00874.


Methyltransferase Domain-Focused Genome Mining for Fungal Polyketide Synthases.

Yan D, Matsuda Y Small Methods. 2024; 8(11):e2400107.

PMID: 38644685 PMC: 11579551. DOI: 10.1002/smtd.202400107.


A genetic tool to express long fungal biosynthetic genes.

Kirchgaessner L, Wurlitzer J, Seibold P, Rakhmanov M, Gressler M Fungal Biol Biotechnol. 2023; 10(1):4.

PMID: 36726159 PMC: 9893682. DOI: 10.1186/s40694-023-00152-3.


Anammox Bacterial -Adenosyl-l-Methionine Dependent Methyltransferase Crystal Structure and Its Interaction with Acyl Carrier Proteins.

Uegaki T, Takei T, Yamaguchi S, Fujiyama K, Sato Y, Hino T Int J Mol Sci. 2023; 24(1).

PMID: 36614187 PMC: 9821293. DOI: 10.3390/ijms24010744.


Structural basis for the biosynthesis of lovastatin.

Wang J, Liang J, Chen L, Zhang W, Kong L, Peng C Nat Commun. 2021; 12(1):867.

PMID: 33558520 PMC: 7870829. DOI: 10.1038/s41467-021-21174-8.


References
1.
Khaleeli N, Busby R, Townsend C . Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase. The His-3 variant of the 2-His-1-carboxylate model. Biochemistry. 2000; 39(29):8666-73. DOI: 10.1021/bi000534c. View

2.
Udwary D, Merski M, Townsend C . A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase. J Mol Biol. 2002; 323(3):585-98. PMC: 3400148. DOI: 10.1016/s0022-2836(02)00972-5. View

3.
Martin J, McMillan F . SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol. 2002; 12(6):783-93. DOI: 10.1016/s0959-440x(02)00391-3. View

4.
Kroken S, Glass N, Taylor J, Yoder O, Turgeon B . Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A. 2003; 100(26):15670-5. PMC: 307626. DOI: 10.1073/pnas.2532165100. View

5.
Krissinel E, Henrick K . Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2256-68. DOI: 10.1107/S0907444904026460. View