» Articles » PMID: 28228978

Population and Clinical Genetics of Human Transposable Elements in the (post) Genomic Era

Overview
Date 2017 Feb 24
PMID 28228978
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Recent technological developments-in genomics, bioinformatics and high-throughput experimental techniques-are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health.

Citing Articles

Genomic object detection: An improved approach for transposable elements detection and classification using convolutional neural networks.

Orozco-Arias S, Lopez-Murillo L, Pina J, Valencia-Castrillon E, Tabares-Soto R, Castillo-Ossa L PLoS One. 2023; 18(9):e0291925.

PMID: 37733731 PMC: 10513252. DOI: 10.1371/journal.pone.0291925.


G-SAIP: Graphical Sequence Alignment Through Parallel Programming in the Post-Genomic Era.

Pina J, Orozco-Arias S, Tobon-Orozco N, Camargo-Forero L, Tabares-Soto R, Guyot R Evol Bioinform Online. 2023; 19:11769343221150585.

PMID: 36703866 PMC: 9871978. DOI: 10.1177/11769343221150585.


The coevolution between APOBEC3 and retrotransposons in primates.

Modenini G, Abondio P, Boattini A Mob DNA. 2022; 13(1):27.

PMID: 36443831 PMC: 9706992. DOI: 10.1186/s13100-022-00283-1.


-mer-based machine learning method to classify LTR-retrotransposons in plant genomes.

Orozco-Arias S, Candamil-Cortes M, Jaimes P, Pina J, Tabares-Soto R, Guyot R PeerJ. 2021; 9:e11456.

PMID: 34055489 PMC: 8140598. DOI: 10.7717/peerj.11456.


InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning.

Orozco-Arias S, Jaimes P, Candamil M, Jimenez-Varon C, Tabares-Soto R, Isaza G Genes (Basel). 2021; 12(2).

PMID: 33525408 PMC: 7910972. DOI: 10.3390/genes12020190.


References
1.
Watkins W, Rogers A, Ostler C, Wooding S, Bamshad M, Brassington A . Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res. 2003; 13(7):1607-18. PMC: 403734. DOI: 10.1101/gr.894603. View

2.
Collins F, Green E, Guttmacher A, Guyer M . A vision for the future of genomics research. Nature. 2003; 422(6934):835-47. DOI: 10.1038/nature01626. View

3.
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A . Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317-30. PMC: 4530010. DOI: 10.1038/nature14248. View

4.
Novick G, Novick C, Yunis J, Yunis E, Antunez de Mayolo P, Scheer W . Polymorphic Alu insertions and the Asian origin of Native American populations. Hum Biol. 1998; 70(1):23-39. View

5.
Wang H, Xing J, Grover D, Hedges D, Han K, Walker J . SVA elements: a hominid-specific retroposon family. J Mol Biol. 2005; 354(4):994-1007. DOI: 10.1016/j.jmb.2005.09.085. View