» Articles » PMID: 28218922

Unravelling Surface and Interfacial Structures of a Metal-organic Framework by Transmission Electron Microscopy

Overview
Journal Nat Mater
Date 2017 Feb 21
PMID 28218922
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

Citing Articles

Moiré two-dimensional covalent organic framework superlattices.

Zhan G, Koek B, Yuan Y, Liu Y, Mishra V, Lenzi V Nat Chem. 2025; .

PMID: 39979413 DOI: 10.1038/s41557-025-01748-5.


Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs.

Wei K, Zhou T, Jiang Y, Sun C, Liu Y, Li S Nature. 2025; 638(8052):949-956.

PMID: 39972133 DOI: 10.1038/s41586-024-08503-9.


/ study of Cu-based nanocatalysts for CO electroreduction using electrochemical liquid cell TEM.

Wan J, Zhang Q, Liu E, Chen Y, Zheng J, Ren A Front Chem. 2025; 13:1525245.

PMID: 39950133 PMC: 11821932. DOI: 10.3389/fchem.2025.1525245.


Metal-halide porous framework superlattices.

Zhang W, Jiang H, Liu Y, Hu Y, Palakkal A, Zhou Y Nature. 2025; 638(8050):418-424.

PMID: 39910312 DOI: 10.1038/s41586-024-08447-0.


Unravelling nonclassical beam damage mechanisms in metal-organic frameworks by low-dose electron microscopy.

Xu X, Xia L, Zheng C, Liu Y, Yu D, Li J Nat Commun. 2025; 16(1):261.

PMID: 39747904 PMC: 11695741. DOI: 10.1038/s41467-024-55632-w.


References
1.
Feyand M, Mugnaioli E, Vermoortele F, Bueken B, Dieterich J, Reimer T . Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew Chem Int Ed Engl. 2012; 51(41):10373-6. DOI: 10.1002/anie.201204963. View

2.
Fang Z, Bueken B, De Vos D, Fischer R . Defect-Engineered Metal-Organic Frameworks. Angew Chem Int Ed Engl. 2015; 54(25):7234-54. PMC: 4510710. DOI: 10.1002/anie.201411540. View

3.
Wu H, Chua Y, Krungleviciute V, Tyagi M, Chen P, Yildirim T . Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc. 2013; 135(28):10525-32. DOI: 10.1021/ja404514r. View

4.
Cliffe M, Wan W, Zou X, Chater P, Kleppe A, Tucker M . Correlated defect nanoregions in a metal-organic framework. Nat Commun. 2014; 5:4176. PMC: 4730551. DOI: 10.1038/ncomms5176. View

5.
Li X, Mooney P, Zheng S, Booth C, Braunfeld M, Gubbens S . Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 2013; 10(6):584-90. PMC: 3684049. DOI: 10.1038/nmeth.2472. View