» Articles » PMID: 28212287

Big Data Analytics for Genomic Medicine

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2017 Feb 18
PMID 28212287
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients' genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs.

Citing Articles

Big data for neuroscience in the context of predictive, preventive, and personalized medicine.

Bajinka O, Ouedraogo S, Li N, Zhan X EPMA J. 2025; 16(1):17-35.

PMID: 39991094 PMC: 11842698. DOI: 10.1007/s13167-024-00393-1.


Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives.

Molla G, Bitew M Biomedicines. 2025; 12(12.

PMID: 39767657 PMC: 11673561. DOI: 10.3390/biomedicines12122750.


Application of Data Mining Technology in the Screening for Gallbladder Stones: A Cross-Sectional Retrospective Study of Chinese Adults.

Wang S, Bao C, Pei D Yonsei Med J. 2024; 65(4):210-216.

PMID: 38515358 PMC: 10973557. DOI: 10.3349/ymj.2023.0246.


New Challenges for Anatomists in the Era of Omics.

Stabile A, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G Diagnostics (Basel). 2023; 13(18).

PMID: 37761332 PMC: 10529314. DOI: 10.3390/diagnostics13182963.


Liquid biopsy. A challenge for clinical laboratories.

Jimenez W Adv Lab Med. 2023; 1(3):20200055.

PMID: 37361499 PMC: 10197807. DOI: 10.1515/almed-2020-0055.


References
1.
Rasmussen-Torvik L, Stallings S, Gordon A, Almoguera B, Basford M, Bielinski S . Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther. 2014; 96(4):482-9. PMC: 4169732. DOI: 10.1038/clpt.2014.137. View

2.
Gurwitz D, Pirmohamed M . Pharmacogenomics: the importance of accurate phenotypes. Pharmacogenomics. 2010; 11(4):469-70. DOI: 10.2217/pgs.10.41. View

3.
Langmead B, Schatz M, Lin J, Pop M, Salzberg S . Searching for SNPs with cloud computing. Genome Biol. 2009; 10(11):R134. PMC: 3091327. DOI: 10.1186/gb-2009-10-11-r134. View

4.
Flanagan S, Patch A, Ellard S . Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers. 2010; 14(4):533-7. DOI: 10.1089/gtmb.2010.0036. View

5.
Laird A, Eickhoff S, Fox P, Uecker A, Ray K, Saenz Jr J . The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes. 2011; 4:349. PMC: 3180707. DOI: 10.1186/1756-0500-4-349. View