Ramesh A, Doddi A, Abbasi A, Al-Mamun M, Sakhuja A, Shawwa K
PLoS One. 2024; 19(12):e0315643.
PMID: 39700078
PMC: 11658609.
DOI: 10.1371/journal.pone.0315643.
Li C, Zhao K, Ren Q, Chen L, Zhang Y, Wang G
Front Cell Infect Microbiol. 2024; 14:1488505.
PMID: 39559702
PMC: 11570588.
DOI: 10.3389/fcimb.2024.1488505.
Wang Y, Sun X, Lu J, Zhong L, Yang Z
Ann Med. 2024; 56(1):2388709.
PMID: 39155811
PMC: 11334739.
DOI: 10.1080/07853890.2024.2388709.
Zhong L, Min J, Zhang J, Hu B, Qian C
iScience. 2024; 27(8):110397.
PMID: 39108713
PMC: 11301094.
DOI: 10.1016/j.isci.2024.110397.
Li J, Zhu M, Yan L
Ren Fail. 2024; 46(2):2380748.
PMID: 39082758
PMC: 11293267.
DOI: 10.1080/0886022X.2024.2380748.
Nomogram for Risk Prediction of Mortality for Patients with Critical Cardiovascular Disease Treated by Continuous Renal Replacement Therapy in Coronary Care Unit.
Zhu X, Li K, Chen M
Rev Cardiovasc Med. 2024; 23(6):189.
PMID: 39077190
PMC: 11273656.
DOI: 10.31083/j.rcm2306189.
Machine learning for the prediction of 1-year mortality in patients with sepsis-associated acute kidney injury.
Li L, Guan J, Peng X, Zhou L, Zhang Z, Ding L
BMC Med Inform Decis Mak. 2024; 24(1):208.
PMID: 39054463
PMC: 11271185.
DOI: 10.1186/s12911-024-02583-3.
The prediction of in-hospital mortality in elderly patients with sepsis-associated acute kidney injury utilizing machine learning models.
Tang J, Huang J, He X, Zou S, Gong L, Yuan Q
Heliyon. 2024; 10(4):e26570.
PMID: 38420451
PMC: 10901004.
DOI: 10.1016/j.heliyon.2024.e26570.
Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
Fan Z, Jiang J, Xiao C, Chen Y, Xia Q, Wang J
J Transl Med. 2023; 21(1):406.
PMID: 37349774
PMC: 10286378.
DOI: 10.1186/s12967-023-04205-4.
Assessment of severity scoring systems for predicting mortality in critically ill patients receiving continuous renal replacement therapy.
Park H, Yang J, Chun B
PLoS One. 2023; 18(5):e0286246.
PMID: 37228073
PMC: 10212150.
DOI: 10.1371/journal.pone.0286246.
Significance of platelets in the early warning of new-onset AKI in the ICU by using supervise learning: a retrospective analysis.
Pan P, Liu Y, Xie F, Duan Z, Li L, Gu H
Ren Fail. 2023; 45(1):2194433.
PMID: 37013397
PMC: 10075490.
DOI: 10.1080/0886022X.2023.2194433.
Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury.
Li X, Wu R, Zhao W, Shi R, Zhu Y, Wang Z
Sci Rep. 2023; 13(1):5223.
PMID: 36997585
PMC: 10063657.
DOI: 10.1038/s41598-023-32160-z.
Procalcitonin decrease predicts survival and recovery from dialysis at 28 days in patients with sepsis-induced acute kidney injury receiving continuous renal replacement therapy.
Kim I, Kim S, Ye B, Kim M, Kim S, Lee D
PLoS One. 2022; 17(12):e0279561.
PMID: 36574383
PMC: 9794048.
DOI: 10.1371/journal.pone.0279561.
Development and validation of prediction model using nursing notes on sentiment scores for prognosis of patients with severe acute kidney injury receiving continuous renal replacement therapy based on computational intelligence algorithms.
Zha D, Yang X, Zhang H, Xu L, Jin Y, Li N
Ann Transl Med. 2022; 10(20):1110.
PMID: 36388821
PMC: 9652558.
DOI: 10.21037/atm-22-4403.
Association between predialysis creatinine and mortality in acute kidney injury patients requiring dialysis.
Chang H, Wu C, Tsai C, Chiu P
PLoS One. 2022; 17(9):e0274883.
PMID: 36155549
PMC: 9512211.
DOI: 10.1371/journal.pone.0274883.
Predicting Mortality Using Machine Learning Algorithms in Patients Who Require Renal Replacement Therapy in the Critical Care Unit.
Chang H, Chiang J, Wang C, Chiu P, Abdel-Kader K, Chen H
J Clin Med. 2022; 11(18).
PMID: 36142936
PMC: 9500742.
DOI: 10.3390/jcm11185289.
Development and validation of outcome prediction models for acute kidney injury patients undergoing continuous renal replacement therapy.
Li B, Huo Y, Zhang K, Chang L, Zhang H, Wang X
Front Med (Lausanne). 2022; 9:853989.
PMID: 36059833
PMC: 9433572.
DOI: 10.3389/fmed.2022.853989.
No sex differences in the incidence, risk factors and clinical impact of acute kidney injury in critically ill patients with sepsis.
Peng J, Tang R, Yu Q, Wang D, Qi D
Front Immunol. 2022; 13:895018.
PMID: 35911764
PMC: 9329949.
DOI: 10.3389/fimmu.2022.895018.
Multi-Omics Techniques Make it Possible to Analyze Sepsis-Associated Acute Kidney Injury Comprehensively.
Qiao J, Cui L
Front Immunol. 2022; 13:905601.
PMID: 35874763
PMC: 9300837.
DOI: 10.3389/fimmu.2022.905601.
Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury.
Luo X, Yan P, Duan S, Kang Y, Deng Y, Liu Q
Front Med (Lausanne). 2022; 9:853102.
PMID: 35783603
PMC: 9240603.
DOI: 10.3389/fmed.2022.853102.