» Articles » PMID: 28163196

Extraction of Left Ventricular Ejection Fraction Information from Various Types of Clinical Reports

Overview
Journal J Biomed Inform
Publisher Elsevier
Date 2017 Feb 7
PMID 28163196
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Efforts to improve the treatment of congestive heart failure, a common and serious medical condition, include the use of quality measures to assess guideline-concordant care. The goal of this study is to identify left ventricular ejection fraction (LVEF) information from various types of clinical notes, and to then use this information for heart failure quality measurement. We analyzed the annotation differences between a new corpus of clinical notes from the Echocardiography, Radiology, and Text Integrated Utility package and other corpora annotated for natural language processing (NLP) research in the Department of Veterans Affairs. These reports contain varying degrees of structure. To examine whether existing LVEF extraction modules we developed in prior research improve the accuracy of LVEF information extraction from the new corpus, we created two sequence-tagging NLP modules trained with a new data set, with or without predictions from the existing LVEF extraction modules. We also conducted a set of experiments to examine the impact of training data size on information extraction accuracy. We found that less training data is needed when reports are highly structured, and that combining predictions from existing LVEF extraction modules improves information extraction when reports have less structured formats and a rich set of vocabulary.

Citing Articles

ViViEchoformer: Deep Video Regressor Predicting Ejection Fraction.

Akan T, Alp S, Bhuiyan M, Helmy T, Orr A, Bhuiyan M J Imaging Inform Med. 2024; .

PMID: 39586913 DOI: 10.1007/s10278-024-01336-y.


ViViEchoformer: Deep Video Regressor Predicting Ejection Fraction.

Akan T, Alp S, Bhuiyan M, Helmy T, Orr A, Bhuiyan M medRxiv. 2024; .

PMID: 38947006 PMC: 11213045. DOI: 10.1101/2024.06.21.24309327.


Development and Evaluation of a Natural Language Processing System for Curating a Trans-Thoracic Echocardiogram (TTE) Database.

Dong T, Sunderland N, Nightingale A, Fudulu D, Chan J, Zhai B Bioengineering (Basel). 2023; 10(11).

PMID: 38002431 PMC: 10669818. DOI: 10.3390/bioengineering10111307.


Predictors of Incident Heart Failure Diagnosis Setting: Insights From the Veterans Affairs Healthcare System.

Tisdale R, Fan J, Calma J, Cyr K, Podchiyska T, Stafford R JACC Heart Fail. 2023; 11(3):347-358.

PMID: 36881392 PMC: 10069381. DOI: 10.1016/j.jchf.2022.11.013.


Evaluating the Portability of an NLP System for Processing Echocardiograms: A Retrospective, Multi-site Observational Study.

Adekkanattu P, Jiang G, Luo Y, Kingsbury P, Xu Z, Rasmussen L AMIA Annu Symp Proc. 2020; 2019:190-199.

PMID: 32308812 PMC: 7153064.


References
1.
Pakhomov S, Weston S, Jacobsen S, Chute C, Meverden R, Roger V . Electronic medical records for clinical research: application to the identification of heart failure. Am J Manag Care. 2007; 13(6 Part 1):281-8. View

2.
Chung J, Murphy S . Concept-value pair extraction from semi-structured clinical narrative: a case study using echocardiogram reports. AMIA Annu Symp Proc. 2006; :131-5. PMC: 1560613. View

3.
Gobbel G, Garvin J, Reeves R, Cronin R, Heavirland J, Williams J . Assisted annotation of medical free text using RapTAT. J Am Med Inform Assoc. 2014; 21(5):833-41. PMC: 4147611. DOI: 10.1136/amiajnl-2013-002255. View

4.
Garvin J, DuVall S, South B, Bray B, Bolton D, Heavirland J . Automated extraction of ejection fraction for quality measurement using regular expressions in Unstructured Information Management Architecture (UIMA) for heart failure. J Am Med Inform Assoc. 2012; 19(5):859-66. PMC: 3422820. DOI: 10.1136/amiajnl-2011-000535. View

5.
Hunt S, Abraham W, Chin M, Feldman A, Francis G, Ganiats T . 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines:.... Circulation. 2009; 119(14):e391-479. DOI: 10.1161/CIRCULATIONAHA.109.192065. View