» Articles » PMID: 28148769

Fundamental Limitations of Network Reconstruction from Temporal Data

Overview
Date 2017 Feb 3
PMID 28148769
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Inferring properties of the interaction matrix that characterizes how nodes in a networked system directly interact with each other is a well-known network reconstruction problem. Despite a decade of extensive studies, network reconstruction remains an outstanding challenge. The fundamental limitations governing which properties of the interaction matrix (e.g. adjacency pattern, sign pattern or degree sequence) can be inferred from given temporal data of individual nodes remain unknown. Here, we rigorously derive the necessary conditions to reconstruct any property of the interaction matrix. Counterintuitively, we find that reconstructing any property of the interaction matrix is generically as difficult as reconstructing the interaction matrix itself, requiring equally informative temporal data. Revealing these fundamental limitations sheds light on the design of better network reconstruction algorithms that offer practical improvements over existing methods.

Citing Articles

Unifying fragmented perspectives with additive deep learning for high-dimensional models from partial faceted datasets.

Wu Y, Wu P, Chambliss A, Wirtz D, Sun S NPJ Biol Phys Mech. 2025; 2(1):5.

PMID: 40012561 PMC: 11850287. DOI: 10.1038/s44341-025-00009-3.


mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data.

Tan X, Xue F, Zhang C, Wang T Brief Bioinform. 2024; 25(6).

PMID: 39526854 PMC: 11551971. DOI: 10.1093/bib/bbae580.


Targeting keystone species helps restore the dysbiosis of butyrate-producing bacteria in nonalcoholic fatty liver disease.

Wu D, Liu L, Jiao N, Zhang Y, Yang L, Tian C Imeta. 2024; 1(4):e61.

PMID: 38867895 PMC: 10989787. DOI: 10.1002/imt2.61.


Inferring upstream regulatory genes of FOXP3 in human regulatory T cells from time-series transcriptomic data.

Magni S, Sawlekar R, Capelle C, Tslaf V, Baron A, Zeng N NPJ Syst Biol Appl. 2024; 10(1):59.

PMID: 38811598 PMC: 11137136. DOI: 10.1038/s41540-024-00387-9.


Controlling the human microbiome.

Liu Y Cell Syst. 2023; 14(2):135-159.

PMID: 36796332 PMC: 9942095. DOI: 10.1016/j.cels.2022.12.010.


References
1.
Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C . Stability indicators in network reconstruction. PLoS One. 2014; 9(2):e89815. PMC: 3937450. DOI: 10.1371/journal.pone.0089815. View

2.
Krishnan A, Giuliani A, Tomita M . Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity. PLoS One. 2007; 2(6):e562. PMC: 1894653. DOI: 10.1371/journal.pone.0000562. View

3.
Barzel B, Barabasi A . Universality in network dynamics. Nat Phys. 2013; 9. PMC: 3852675. DOI: 10.1038/nphys2741. View

4.
Arianos S, Bompard E, Carbone A, Xue F . Power grid vulnerability: a complex network approach. Chaos. 2009; 19(1):013119. DOI: 10.1063/1.3077229. View

5.
Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmuller U . Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009; 25(15):1923-9. DOI: 10.1093/bioinformatics/btp358. View