» Articles » PMID: 17299415

How to Infer Gene Networks from Expression Profiles

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2007 Feb 15
PMID 17299415
Citations 285
Authors
Affiliations
Soon will be listed here.
Abstract

Inferring, or 'reverse-engineering', gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse-engineering algorithms for which ready-to-use software was available and that had been tested on experimental data sets. We show that reverse-engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful.

Citing Articles

Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD.

Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C Genes (Basel). 2025; 16(1).

PMID: 39858558 PMC: 11764921. DOI: 10.3390/genes16010011.


Integrating Prior Knowledge Using Transformer for Gene Regulatory Network Inference.

Weng G, Martin P, Kim H, Won K Adv Sci (Weinh). 2024; 12(3):e2409990.

PMID: 39605181 PMC: 11744656. DOI: 10.1002/advs.202409990.


Multioviz: an interactive platform for in silico perturbation and interrogation of gene regulatory networks.

Xie H, Crawford L, Conard A BMC Bioinformatics. 2024; 25(1):249.

PMID: 39080561 PMC: 11290168. DOI: 10.1186/s12859-024-05819-1.


Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization.

Hashmi S, Alabdullah B, Al Mudawi N, Algarni A, Jalal A, Liu H Sensors (Basel). 2024; 24(14).

PMID: 39065952 PMC: 11280993. DOI: 10.3390/s24144554.


Enhancing Gene Co-Expression Network Inference for the Malaria Parasite .

Li Q, Button-Simons K, Sievert M, Chahoud E, Foster G, Meis K Genes (Basel). 2024; 15(6).

PMID: 38927622 PMC: 11202799. DOI: 10.3390/genes15060685.


References
1.
Tadesse M, Vannucci M, Lio P . Identification of DNA regulatory motifs using Bayesian variable selection. Bioinformatics. 2004; 20(16):2553-61. DOI: 10.1093/bioinformatics/bth282. View

2.
Eisen M, Spellman P, Brown P, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998; 95(25):14863-8. PMC: 24541. DOI: 10.1073/pnas.95.25.14863. View

3.
di Bernardo D, Thompson M, Gardner T, Chobot S, Eastwood E, Wojtovich A . Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol. 2005; 23(3):377-83. DOI: 10.1038/nbt1075. View

4.
Bansal M, Della Gatta G, di Bernardo D . Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics. 2006; 22(7):815-22. DOI: 10.1093/bioinformatics/btl003. View

5.
van Someren E, Vaes B, Steegenga W, Sijbers A, Dechering K, Reinders M . Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics. 2005; 22(4):477-84. DOI: 10.1093/bioinformatics/bti816. View