» Articles » PMID: 28137859

Efficient in Vivo Gene Editing Using Ribonucleoproteins in Skin Stem Cells of Recessive Dystrophic Epidermolysis Bullosa Mouse Model

Overview
Specialty Science
Date 2017 Feb 1
PMID 28137859
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

The prokaryotic CRISPR/Cas9 system has recently emerged as a powerful tool for genome editing in mammalian cells with the potential to bring curative therapies to patients with genetic diseases. However, efficient in vivo delivery of this genome editing machinery and indeed the very feasibility of using these techniques in vivo remain challenging for most tissue types. Here, we show that nonreplicable Cas9/sgRNA ribonucleoproteins can be used to correct genetic defects in skin stem cells of postnatal recessive dystrophic epidermolysis bullosa (RDEB) mice. We developed a method to locally deliver Cas9/sgRNA ribonucleoproteins into the skin of postnatal mice. This method results in rapid gene editing in epidermal stem cells. Using this method, we show that Cas9/sgRNA ribonucleoproteins efficiently excise exon80, which covers the point mutation in our RDEB mouse model, and thus restores the correct localization of the collagen VII protein in vivo. The skin blistering phenotype is also significantly ameliorated after treatment. This study provides an in vivo gene correction strategy using ribonucleoproteins as curative treatment for genetic diseases in skin and potentially in other somatic tissues.

Citing Articles

Unlocking Genome Editing: Advances and Obstacles in CRISPR/Cas Delivery Technologies.

Kaupbayeva B, Tsoy A, Safarova Yantsen Y, Nurmagambetova A, Murata H, Matyjaszewski K J Funct Biomater. 2024; 15(11).

PMID: 39590528 PMC: 11595195. DOI: 10.3390/jfb15110324.


Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa.

Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A Int J Mol Sci. 2024; 25(19).

PMID: 39408598 PMC: 11476579. DOI: 10.3390/ijms251910270.


Advancement of animal and poultry nutrition: Harnessing the power of CRISPR-Cas genome editing technology.

Mishu M, Nath S, Sohidullah M, Hossain M J Adv Vet Anim Res. 2024; 11(2):483-493.

PMID: 39101073 PMC: 11296187. DOI: 10.5455/javar.2024.k798.


Highly efficient CRISPR/Cas9-mediated exon skipping for recessive dystrophic epidermolysis bullosa.

du Rand A, Hunt J, Samson C, Loef E, Malhi C, Meidinger S Bioeng Transl Med. 2024; 9(4):e10640.

PMID: 39036091 PMC: 11256143. DOI: 10.1002/btm2.10640.


Targeted nonviral delivery of genome editors in vivo.

Tsuchida C, Wasko K, Hamilton J, Doudna J Proc Natl Acad Sci U S A. 2024; 121(11):e2307796121.

PMID: 38437567 PMC: 10945750. DOI: 10.1073/pnas.2307796121.


References
1.
Woodley D, Krueger G, Jorgensen C, Fairley J, Atha T, Huang Y . Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J Invest Dermatol. 2004; 121(5):1021-8. DOI: 10.1046/j.1523-1747.2003.12571.x. View

2.
Nelson C, Hakim C, Ousterout D, Thakore P, Moreb E, Castellanos Rivera R . In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016; 351(6271):403-7. PMC: 4883596. DOI: 10.1126/science.aad5143. View

3.
Bilousova G, Roop D . Induced pluripotent stem cells in dermatology: potentials, advances, and limitations. Cold Spring Harb Perspect Med. 2014; 4(11):a015164. PMC: 4208713. DOI: 10.1101/cshperspect.a015164. View

4.
Wong T, Gammon L, Liu L, Mellerio J, Dopping-Hepenstal P, Pacy J . Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2008; 128(9):2179-89. DOI: 10.1038/jid.2008.78. View

5.
Wagner J, Ishida-Yamamoto A, McGrath J, Hordinsky M, Keene D, Woodley D . Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med. 2010; 363(7):629-39. PMC: 2967187. DOI: 10.1056/NEJMoa0910501. View