» Articles » PMID: 28116781

Improved Surfaceome Coverage with a Label-free Nonaffinity-purified Workflow

Overview
Journal Proteomics
Date 2017 Jan 25
PMID 28116781
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The proteins of the cellular plasma membrane (PM) perform important functions relating to homeostasis and intercellular communication. Due to its overall low cellular abundance, amphipathic character, and low membrane-to-cytoplasm ratio, the PM proteome has been challenging to isolate and characterize, and is poorly represented in standard LC-MS/MS analyses. In this study, we employ sucrose gradient ultracentrifugation for the enrichment of the PM proteome, without chemical labeling and affinity purification, together with GeLCMS and use subsequent bioinformatics tools to select proteins associated with the PM/cell surface, herein referred to as the surfaceome. Using this methodology, we identify over 1900 cell surface associated proteins in a human acute myeloid leukemia cell line. These surface proteins comprise almost 50% of all detected cellular proteins, a number that substantially exceeds the depth of coverage in previously published studies describing the leukemia surfaceome.

Citing Articles

A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma.

Hamilton A, Radaoui A, Tsang M, Martinez D, Conkrite K, Patel K Cancer Cell. 2024; 42(11):1970-1982.e7.

PMID: 39454577 PMC: 11560519. DOI: 10.1016/j.ccell.2024.10.003.


Surface and Global Proteome Analyses Identify ENPP1 and Other Surface Proteins as Actionable Immunotherapeutic Targets in Ewing Sarcoma.

Mooney B, Negri G, Shyp T, Delaidelli A, Zhang H, Spencer Miko S Clin Cancer Res. 2023; 30(5):1022-1037.

PMID: 37812652 PMC: 10905525. DOI: 10.1158/1078-0432.CCR-23-2187.


ER-luminal [Ca] regulation of InsP receptor gating mediated by an ER-luminal peripheral Ca-binding protein.

Vais H, Wang M, Mallilankaraman K, Payne R, McKennan C, Lock J Elife. 2020; 9.

PMID: 32420875 PMC: 7259957. DOI: 10.7554/eLife.53531.


Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data.

Ignjatovic V, Geyer P, Palaniappan K, Chaaban J, Omenn G, Baker M J Proteome Res. 2019; 18(12):4085-4097.

PMID: 31573204 PMC: 6898750. DOI: 10.1021/acs.jproteome.9b00503.

References
1.
da Cunha J, Galante P, De Souza J, de Souza R, Carvalho P, Ohara D . Bioinformatics construction of the human cell surfaceome. Proc Natl Acad Sci U S A. 2009; 106(39):16752-7. PMC: 2757864. DOI: 10.1073/pnas.0907939106. View

2.
Vizcaino J, Csordas A, Del-Toro N, Dianes J, Griss J, Lavidas I . 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015; 44(D1):D447-56. PMC: 4702828. DOI: 10.1093/nar/gkv1145. View

3.
Wu C, Yates 3rd J . The application of mass spectrometry to membrane proteomics. Nat Biotechnol. 2003; 21(3):262-7. DOI: 10.1038/nbt0303-262. View

4.
Yildirim M, Goh K, Cusick M, Barabasi A, Vidal M . Drug-target network. Nat Biotechnol. 2007; 25(10):1119-26. DOI: 10.1038/nbt1338. View

5.
Choksawangkarn W, Edwards N, Wang Y, Gutierrez P, Fenselau C . Comparative study of workflows optimized for in-gel, in-solution, and on-filter proteolysis in the analysis of plasma membrane proteins. J Proteome Res. 2012; 11(5):3030-4. PMC: 3356699. DOI: 10.1021/pr300188b. View