» Articles » PMID: 28007024

ICAGES: Integrated CAncer GEnome Score for Comprehensively Prioritizing Driver Genes in Personal Cancer Genomes

Overview
Journal Genome Med
Publisher Biomed Central
Specialty Genetics
Date 2016 Dec 24
PMID 28007024
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer results from the acquisition of somatic driver mutations. Several computational tools can predict driver genes from population-scale genomic data, but tools for analyzing personal cancer genomes are underdeveloped. Here we developed iCAGES, a novel statistical framework that infers driver variants by integrating contributions from coding, non-coding, and structural variants, identifies driver genes by combining genomic information and prior biological knowledge, then generates prioritized drug treatment. Analysis on The Cancer Genome Atlas (TCGA) data showed that iCAGES predicts whether patients respond to drug treatment (P = 0.006 by Fisher's exact test) and long-term survival (P = 0.003 from Cox regression). iCAGES is available at http://icages.wglab.org .

Citing Articles

SMG: self-supervised masked graph learning for cancer gene identification.

Cui Y, Wang Z, Wang X, Zhang Y, Zhang Y, Pan T Brief Bioinform. 2023; 24(6).

PMID: 37950905 PMC: 10639095. DOI: 10.1093/bib/bbad406.


Identifying cancer driver genes in individual tumours.

Gillman R, Field M, Schmitz U, Karamatic R, Hebbard L Comput Struct Biotechnol J. 2023; 21:5028-5038.

PMID: 37867967 PMC: 10589724. DOI: 10.1016/j.csbj.2023.10.019.


A Comprehensive Investigation of Genomic Variants in Prostate Cancer Reveals 30 Putative Regulatory Variants.

Labani M, Beheshti A, Argha A, Alinejad-Rokny H Int J Mol Sci. 2023; 24(3).

PMID: 36768794 PMC: 9916892. DOI: 10.3390/ijms24032472.


PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology.

Ulgen E, Ozisik O, Sezerman O Bioinformatics. 2023; 39(1).

PMID: 36689556 PMC: 9869653. DOI: 10.1093/bioinformatics/btad022.


TCGA-My: A Systematic Repository for Systems Biology of Malaysian Colorectal Cancer.

Azuwar M, Nor Muhammad N, Afiqah-Aleng N, Mutalib N, Md Yusof N, Mohd Yunos R Life (Basel). 2022; 12(6).

PMID: 35743803 PMC: 9224961. DOI: 10.3390/life12060772.


References
1.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M . KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2011; 40(Database issue):D109-14. PMC: 3245020. DOI: 10.1093/nar/gkr988. View

2.
Cooper G, Stone E, Asimenos G, Green E, Batzoglou S, Sidow A . Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005; 15(7):901-13. PMC: 1172034. DOI: 10.1101/gr.3577405. View

3.
Meyerson M, Gabriel S, Getz G . Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010; 11(10):685-96. DOI: 10.1038/nrg2841. View

4.
Auer P, Johnsen J, Johnson A, Logsdon B, Lange L, Nalls M . Imputation of exome sequence variants into population- based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project. Am J Hum Genet. 2012; 91(5):794-808. PMC: 3487117. DOI: 10.1016/j.ajhg.2012.08.031. View

5.
Kumar P, Henikoff S, Ng P . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009; 4(7):1073-81. DOI: 10.1038/nprot.2009.86. View