» Articles » PMID: 27991763

The "PepSAVI-MS" Pipeline for Natural Product Bioactive Peptide Discovery

Abstract

The recent increase in extensively drug-resistant bacterial pathogens and the associated increase of morbidity and mortality demonstrate the immediate need for new antibiotic backbones with novel mechanisms of action. Here, we report the development of the PepSAVI-MS pipeline for bioactive peptide discovery. This highly versatile platform employs mass spectrometry and statistics to identify bioactive peptide targets from complex biological samples. We validate the use of this platform through the successful identification of known bioactive peptides from a botanical species, Viola odorata. Using this pipeline, we have widened the known antimicrobial spectrum for V. odorata cyclotides, including antibacterial activity of cycloviolacin O2 against A. baumannii. We further demonstrate the broad applicability of the platform through the identification of novel anticancer activities for cycloviolacins by their cytotoxicity against ovarian, breast, and prostate cancer cell lines.

Citing Articles

Topographic imaging with automatic z-axis correction of Brassica oleracea var. viridis leaves by IR-MALDESI mass spectrometry imaging.

Mills Q, Ashbacher S, Sohn A, Muddiman D Anal Bioanal Chem. 2025; .

PMID: 40087179 DOI: 10.1007/s00216-025-05820-4.


Characterization and evaluation of cytotoxic and antimicrobial activities of cyclotides from Viola japonica.

Lian Y, Tang X, Hu G, Miao C, Cui Y, Zhangsun D Sci Rep. 2024; 14(1):9733.

PMID: 38679643 PMC: 11056381. DOI: 10.1038/s41598-024-60246-9.


Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides.

Chekan J, Mydy L, Pasquale M, Kersten R Nat Prod Rep. 2024; 41(7):1020-1059.

PMID: 38411572 PMC: 11253845. DOI: 10.1039/d3np00042g.


Integrating High-Resolution Mass Spectral Data, Bioassays and Computational Models to Annotate Bioactives in Botanical Extracts: Case Study Analysis of Extract Associates Dicaffeoylquinic Acids with Protection against Amyloid-β Toxicity.

Magana A, Vaswani A, Brown K, Jiang Y, Alam M, Caruso M Molecules. 2024; 29(4).

PMID: 38398590 PMC: 10892090. DOI: 10.3390/molecules29040838.


Identification and Characterization of CC-AMP1-like and CC-AMP2-like Peptides in spp.

Culver K, Sadecki P, Jackson J, Brown Z, Hnilica M, Wu J J Proteome Res. 2024; 23(8):2948-2960.

PMID: 38367000 PMC: 11296913. DOI: 10.1021/acs.jproteome.3c00597.


References
1.
Wu K, Li L, Yan J, Tsao N, Liao T, Tsai H . Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 2009; 191(14):4492-501. PMC: 2704730. DOI: 10.1128/JB.00315-09. View

2.
Park I, Cho J, Kim K, Kim Y, Kim M, Kim S . Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem. 2004; 279(14):13896-901. DOI: 10.1074/jbc.M311418200. View

3.
Langsdorf M, Ghassempour A, Rompp A, Spengler B . Characterization of a peptide family from the skin secretion of the Middle East tree frog Hyla savignyi by composition-based de novo sequencing. Rapid Commun Mass Spectrom. 2010; 24(19):2885-99. DOI: 10.1002/rcm.4717. View

4.
Hammami R, Hamida J, Vergoten G, Fliss I . PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res. 2008; 37(Database issue):D963-8. PMC: 2686510. DOI: 10.1093/nar/gkn655. View

5.
Guzman-Rodriguez J, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza J . Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int. 2015; 2015:735087. PMC: 4359852. DOI: 10.1155/2015/735087. View