» Articles » PMID: 27977000

Spinal Microcircuits Comprising DI3 Interneurons Are Necessary for Motor Functional Recovery Following Spinal Cord Transection

Overview
Journal Elife
Specialty Biology
Date 2016 Dec 16
PMID 27977000
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery.

Citing Articles

Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.

Paracha M, Brezinski A, Singh R, Sinson E, Satkunendrarajah K Cells. 2025; 14(4).

PMID: 39996760 PMC: 11854602. DOI: 10.3390/cells14040288.


Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury.

Zhou K, Wei W, Yang D, Zhang H, Yang W, Zhang Y Nat Commun. 2024; 15(1):619.

PMID: 38242904 PMC: 10799086. DOI: 10.1038/s41467-024-44898-9.


Distinguishing subtypes of spinal locomotor neurons to inform circuit function and dysfunction.

Dougherty K Curr Opin Neurobiol. 2023; 82:102763.

PMID: 37611531 PMC: 10578609. DOI: 10.1016/j.conb.2023.102763.


Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice.

Goltash S, Stevens S, Topcu E, Bui T Front Neural Circuits. 2023; 17:1176310.

PMID: 37476398 PMC: 10354275. DOI: 10.3389/fncir.2023.1176310.


Neuroplasticity and regeneration after spinal cord injury.

Punjani N, Deska-Gauthier D, Hachem L, Abramian M, Fehlings M N Am Spine Soc J. 2023; 15:100235.

PMID: 37416090 PMC: 10320621. DOI: 10.1016/j.xnsj.2023.100235.


References
1.
Rossignol S, Frigon A . Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci. 2011; 34:413-40. DOI: 10.1146/annurev-neuro-061010-113746. View

2.
Hnasko T, Chuhma N, Zhang H, Goh G, Sulzer D, Palmiter R . Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron. 2010; 65(5):643-56. PMC: 2846457. DOI: 10.1016/j.neuron.2010.02.012. View

3.
Bouvier J, Caggiano V, Leiras R, Caldeira V, Bellardita C, Balueva K . Descending Command Neurons in the Brainstem that Halt Locomotion. Cell. 2015; 163(5):1191-1203. PMC: 4899047. DOI: 10.1016/j.cell.2015.10.074. View

4.
Hultborn H, Conway B, Gossard J, Brownstone R, Fedirchuk B, Schomburg E . How do we approach the locomotor network in the mammalian spinal cord?. Ann N Y Acad Sci. 1999; 860:70-82. DOI: 10.1111/j.1749-6632.1998.tb09039.x. View

5.
Loeb G, Marks W, Hoffer J . Cat hindlimb motoneurons during locomotion. IV. Participation in cutaneous reflexes. J Neurophysiol. 1987; 57(2):563-73. DOI: 10.1152/jn.1987.57.2.563. View