» Articles » PMID: 27941760

Precise Small-molecule Recognition of a Toxic CUG RNA Repeat Expansion

Overview
Journal Nat Chem Biol
Date 2016 Dec 13
PMID 27941760
Citations 103
Authors
Affiliations
Soon will be listed here.
Abstract

Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG). In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) in its natural context.

Citing Articles

Functions of the Muscleblind-like protein family and their role in disease.

Zhou H, Xu J, Pan L Cell Commun Signal. 2025; 23(1):97.

PMID: 39966885 PMC: 11837677. DOI: 10.1186/s12964-025-02102-5.


The evolution and application of RNA-focused small molecule libraries.

Taghavi A, Springer N, Zanon P, Li Y, Li C, Childs-Disney J RSC Chem Biol. 2025; .

PMID: 39957993 PMC: 11824871. DOI: 10.1039/d4cb00272e.


RNA gain-of-function mechanisms in short tandem repeat diseases.

Davenport M, Swanson M RNA. 2024; 31(3):349-358.

PMID: 39725460 PMC: 11874975. DOI: 10.1261/rna.080277.124.


Technologies for Targeted RNA Degradation and Induced RNA Decay.

Mikutis S, Bernardes G Chem Rev. 2024; 124(23):13301-13330.

PMID: 39499674 PMC: 11638902. DOI: 10.1021/acs.chemrev.4c00472.


NMR structures of small molecules bound to a model of a CUG RNA repeat expansion.

Chen J, Taghavi A, Frank A, Fountain M, Choudhary S, Roy S Bioorg Med Chem Lett. 2024; 111:129888.

PMID: 39002937 PMC: 11702287. DOI: 10.1016/j.bmcl.2024.129888.


References
1.
TANEJA K, McCurrach M, Schalling M, Housman D, Singer R . Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol. 1995; 128(6):995-1002. PMC: 2120416. DOI: 10.1083/jcb.128.6.995. View

2.
Pradeep Velagapudi S, Gallo S, Disney M . Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol. 2014; 10(4):291-7. PMC: 3962094. DOI: 10.1038/nchembio.1452. View

3.
Wang E, Cody N, Jog S, Biancolella M, Wang T, Treacy D . Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell. 2012; 150(4):710-24. PMC: 3428802. DOI: 10.1016/j.cell.2012.06.041. View

4.
Shapiro I, Cheng A, Flytzanis N, Balsamo M, Condeelis J, Oktay M . An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 2011; 7(8):e1002218. PMC: 3158048. DOI: 10.1371/journal.pgen.1002218. View

5.
Warf M, Nakamori M, Matthys C, Thornton C, Berglund J . Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A. 2009; 106(44):18551-6. PMC: 2774031. DOI: 10.1073/pnas.0903234106. View