» Articles » PMID: 27916615

Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia

Abstract

Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche.

Citing Articles

The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia.

Al-Hamaly M, Winter E, Blackburn J Cancer Biol Ther. 2025; 26(1):2460252.

PMID: 39905687 PMC: 11801350. DOI: 10.1080/15384047.2025.2460252.


Dynamic evolution of TCF3-PBX1 leukemias at the single-cell level under chemotherapy pressure.

Kusterer M, Lahnalampi M, Voutilainen M, Brand A, Pennisi S, Norona J Hemasphere. 2025; 9(2):e70071.

PMID: 39901941 PMC: 11788586. DOI: 10.1002/hem3.70071.


Targeting LMO2-induced autocrine FLT3 signaling to overcome chemoresistance in early T-cell precursor acute lymphoblastic leukemia.

Tremblay C, Saw J, Yan F, Boyle J, Amarasinghe O, Abdollahi S Leukemia. 2025; 39(3):577-589.

PMID: 39849166 PMC: 11879882. DOI: 10.1038/s41375-024-02491-5.


High CD44 expression and enhanced E-selectin binding identified as biomarkers of chemoresistant leukemic cells in human T-ALL.

Calvo J, Naguibneva I, Kypraios A, Gilain F, Uzan B, Gaillard B Leukemia. 2024; 39(2):323-336.

PMID: 39580584 PMC: 11794132. DOI: 10.1038/s41375-024-02473-7.


Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment.

Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B Genes Dis. 2024; 12(1):101239.

PMID: 39552788 PMC: 11566696. DOI: 10.1016/j.gendis.2024.101239.


References
1.
Kunz J, Rausch T, Bandapalli O, Eilers J, Pechanska P, Schuessele S . Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. Haematologica. 2015; 100(11):1442-50. PMC: 4825305. DOI: 10.3324/haematol.2015.129692. View

2.
Lutz C, Woll P, Hall G, Castor A, Dreau H, Cazzaniga G . Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia. 2012; 27(5):1204-1207. PMC: 4693965. DOI: 10.1038/leu.2012.306. View

3.
Kang H, Chen I, Wilson C, Bedrick E, Harvey R, Atlas S . Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood. 2009; 115(7):1394-405. PMC: 2826761. DOI: 10.1182/blood-2009-05-218560. View

4.
Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S . Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science. 2008; 319(5861):336-9. DOI: 10.1126/science.1150648. View

5.
Raaijmakers M . Niche contributions to oncogenesis: emerging concepts and implications for the hematopoietic system. Haematologica. 2011; 96(7):1041-8. PMC: 3128224. DOI: 10.3324/haematol.2010.028035. View