» Articles » PMID: 27903888

SiRNA Carrying an (E)-vinylphosphonate Moiety at the 5΄ End of the Guide Strand Augments Gene Silencing by Enhanced Binding to Human Argonaute-2

Overview
Specialty Biochemistry
Date 2016 Dec 2
PMID 27903888
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5΄- phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5΄- phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5΄-(E)-vinylphosphonate (5΄-E-VP) guide RNA at 2.5-Å resolution. The structure demonstrates how the 5΄ binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5΄-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5΄-E-VP -modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA in mice relative to the un-modified siRNA.

Citing Articles

Design, Screening and Development of Asymmetric siRNAs Targeting the Oncogene in Triple-Negative Breast Cancer.

Mekonnen N, Seo M, Yang H, Chelakkot C, Choi J, Hong S Biomol Ther (Seoul). 2024; 33(1):155-169.

PMID: 39632755 PMC: 11704396. DOI: 10.4062/biomolther.2024.071.


The beauty of symmetry: siRNA phosphorodithioate modifications reduce stereocomplexity, ease analysis, and can improve potency.

Schollkopf S, Rathjen S, Graglia M, Was N, Morrison E, Weingartner A Mol Ther Nucleic Acids. 2024; 35(4):102336.

PMID: 39391764 PMC: 11465064. DOI: 10.1016/j.omtn.2024.102336.


Enhancing siRNA efficacy in vivo with extended nucleic acid backbones.

Yamada K, Hariharan V, Caiazzi J, Miller R, Ferguson C, Sapp E Nat Biotechnol. 2024; .

PMID: 39090305 DOI: 10.1038/s41587-024-02336-7.


RNAi-based drug design: considerations and future directions.

Tang Q, Khvorova A Nat Rev Drug Discov. 2024; 23(5):341-364.

PMID: 38570694 PMC: 11144061. DOI: 10.1038/s41573-024-00912-9.


Targeting RNA with synthetic oligonucleotides: Clinical success invites new challenges.

Hofman C, Corey D Cell Chem Biol. 2023; 31(1):125-138.

PMID: 37804835 PMC: 10841528. DOI: 10.1016/j.chembiol.2023.09.005.


References
1.
Chen C, Ridzon D, Broomer A, Zhou Z, Lee D, Nguyen J . Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33(20):e179. PMC: 1292995. DOI: 10.1093/nar/gni178. View

2.
Lima W, Wu H, Nichols J, Sun H, Murray H, Crooke S . Binding and cleavage specificities of human Argonaute2. J Biol Chem. 2009; 284(38):26017-28. PMC: 2758002. DOI: 10.1074/jbc.M109.010835. View

3.
Frank F, Sonenberg N, Nagar B . Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 2010; 465(7299):818-22. DOI: 10.1038/nature09039. View

4.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View

5.
Schirle N, Sheu-Gruttadauria J, MacRae I . Structural basis for microRNA targeting. Science. 2014; 346(6209):608-13. PMC: 4313529. DOI: 10.1126/science.1258040. View