» Articles » PMID: 27896001

Long-range, Wide-field Swept-source Optical Coherence Tomography with GPU Accelerated Digital Lock-in Doppler Vibrography for Real-time, Middle Ear Diagnostics

Overview
Specialty Radiology
Date 2016 Nov 30
PMID 27896001
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

We present the design, implementation and validation of a swept-source optical coherence tomography (OCT) system for real-time imaging of the human middle ear in live patients. Our system consists of a highly phase-stable Vernier-tuned distributed Bragg-reflector laser along with a real-time processing engine implemented on a graphics processing unit. We use the system to demonstrate, for the first time in live subjects, real-time Doppler measurements of middle ear vibration in response to sound, video rate 2D B-mode imaging of the middle ear and 3D volumetric B-mode imaging. All measurements were performed non-invasively through the intact tympanic membrane demonstrating that the technology is readily translatable to the clinic.

Citing Articles

Contemporary Mechanics of Conductive Hearing Loss.

Remenschneider A, Cheng J Oper Tech Otolayngol Head Neck Surg. 2024; 35(1):2-10.

PMID: 38680732 PMC: 11052546. DOI: 10.1016/j.otot.2024.01.001.


The Dresden in vivo OCT dataset for automatic middle ear segmentation.

Liu P, Steuer S, Golde J, Morgenstern J, Hu Y, Schieffer C Sci Data. 2024; 11(1):242.

PMID: 38409278 PMC: 10967373. DOI: 10.1038/s41597-024-03000-0.


Geometrically accurate real-time volumetric visualization of the middle ear using optical coherence tomography.

Farrell J, Wang J, MacDougall D, Yang X, Brewer K, Couvreur F Biomed Opt Express. 2023; 14(7):3152-3171.

PMID: 37497518 PMC: 10368046. DOI: 10.1364/BOE.488845.


Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.

Golabbakhsh M, Wang X, MacDougall D, Farrell J, Landry T, Funnell W J Assoc Res Otolaryngol. 2023; 24(3):339-363.

PMID: 37165211 PMC: 10335995. DOI: 10.1007/s10162-023-00899-x.


Convolutional dictionary learning for blind deconvolution of optical coherence tomography images.

Wang J, Wohlberg B, Adamson R Biomed Opt Express. 2022; 13(4):1834-1854.

PMID: 35519239 PMC: 9045938. DOI: 10.1364/BOE.447394.


References
1.
Chang E, Cheng J, Roosli C, Kobler J, Rosowski J, Yun S . Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Hear Res. 2013; 304:49-56. PMC: 3769454. DOI: 10.1016/j.heares.2013.06.006. View

2.
Jian Y, Wong K, Sarunic M . Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering. J Biomed Opt. 2013; 18(2):26002. DOI: 10.1117/1.JBO.18.2.026002. View

3.
Hong S, Freeman D . Doppler optical coherence microscopy for studies of cochlear mechanics. J Biomed Opt. 2006; 11(5):054014. DOI: 10.1117/1.2358702. View

4.
Bonesi M, Minneman M, Ensher J, Zabihian B, Sattmann H, Boschert P . Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. Opt Express. 2014; 22(3):2632-55. DOI: 10.1364/OE.22.002632. View

5.
Park J, Carbajal E, Chen X, Oghalai J, Applegate B . Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear. Opt Lett. 2014; 39(21):6233-6. PMC: 5407367. DOI: 10.1364/OL.39.006233. View