» Articles » PMID: 25361322

Phase-sensitive Optical Coherence Tomography Using an Vernier-tuned Distributed Bragg Reflector Swept Laser in the Mouse Middle Ear

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2014 Nov 1
PMID 25361322
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Phase-sensitive optical coherence tomography (PhOCT) offers exquisite sensitivity to mechanical vibration in biological tissues. There is growing interest in using PhOCT for imaging the nanometer scale vibrations of the ear in animal models of hearing disorders. Swept-source-based systems offer fast acquisition speeds, suppression of common mode noise via balanced detection, and good signal roll-off. However, achieving high phase stability is difficult due to nonlinear laser sweeps and trigger jitter in a typical swept laser source. Here, we report on the initial application of a Vernier-tuned distributed Bragg reflector (VT-DBR) swept laser as the source for a fiber-based PhOCT system. The VT-DBR swept laser is electronically tuned and precisely controls sweeps without mechanical movement, resulting in highly linear sweeps with high wavelength stability and repeatability. We experimentally measured a phase sensitivity of 0.4 pm standard deviation, within a factor of less than 2 of the computed shot-noise limit. We further demonstrated the system by making ex vivo measurements of the vibrations of the mouse middle ear structures.

Citing Articles

Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.

Golabbakhsh M, Wang X, MacDougall D, Farrell J, Landry T, Funnell W J Assoc Res Otolaryngol. 2023; 24(3):339-363.

PMID: 37165211 PMC: 10335995. DOI: 10.1007/s10162-023-00899-x.


Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives.

Azab M, Hameed M, Obayya S Biology (Basel). 2023; 12(2).

PMID: 36829508 PMC: 9953566. DOI: 10.3390/biology12020232.


Vector of motion measurements in the living cochlea using a 3D OCT vibrometry system.

Kim W, Liu D, Kim S, Ratnayake K, Macias-Escriva F, Mattison S Biomed Opt Express. 2022; 13(4):2542-2553.

PMID: 35519276 PMC: 9045890. DOI: 10.1364/BOE.451537.


In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device.

Lui C, Kim W, Dewey J, Macias-Escriva F, Ratnayake K, Oghalai J Biomed Opt Express. 2021; 12(8):5196-5213.

PMID: 34513251 PMC: 8407818. DOI: 10.1364/BOE.430935.


Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography.

Palma-Chavez J, Kim W, Serafino M, Jo J, Charoenphol P, Applegate B Biomed Opt Express. 2020; 11(8):4255-4274.

PMID: 32923040 PMC: 7449750. DOI: 10.1364/BOE.399322.


References
1.
Szkulmowski M, Grulkowski I, Szlag D, Szkulmowska A, Kowalczyk A, Wojtkowski M . Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography. Opt Express. 2009; 17(16):14281-97. DOI: 10.1364/oe.17.014281. View

2.
Subhash H, Davila V, Sun H, Nguyen-Huynh A, Nuttall A, Wang R . Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography. J Biomed Opt. 2010; 15(3):036024. PMC: 3188621. DOI: 10.1117/1.3456554. View

3.
Braaf B, Vermeer K, Sicam V, van Zeeburg E, van Meurs J, de Boer J . Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid. Opt Express. 2011; 19(21):20886-903. DOI: 10.1364/OE.19.020886. View

4.
Choma M, Ellerbee A, Yang C, Creazzo T, Izatt J . Spectral-domain phase microscopy. Opt Lett. 2005; 30(10):1162-4. DOI: 10.1364/ol.30.001162. View

5.
Gao S, Raphael P, Wang R, Park J, Xia A, Applegate B . In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography. Biomed Opt Express. 2013; 4(2):230-40. PMC: 3567710. DOI: 10.1364/BOE.4.00230. View