» Articles » PMID: 27883902

Circuit Mechanisms of Sensorimotor Learning

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2016 Nov 25
PMID 27883902
Citations 83
Authors
Affiliations
Soon will be listed here.
Abstract

The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals: (1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.

Citing Articles

EEG connectivity and BDNF correlates of fast motor learning in laparoscopic surgery.

Omurtag A, Sunderland C, Mansfield N, Zakeri Z Sci Rep. 2025; 15(1):7399.

PMID: 40032953 PMC: 11876304. DOI: 10.1038/s41598-025-89261-0.


Language writ large: LLMs, ChatGPT, meaning, and understanding.

Harnad S Front Artif Intell. 2025; 7:1490698.

PMID: 40013231 PMC: 11861094. DOI: 10.3389/frai.2024.1490698.


Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges.

Ghosh S, Yadav R, Soni S, Giri S, Muthukrishnan S, Kumar L Front Hum Neurosci. 2025; 19:1532783.

PMID: 39981127 PMC: 11839673. DOI: 10.3389/fnhum.2025.1532783.


VTA projections to M1 are essential for reorganization of layer 2-3 network dynamics underlying motor learning.

Ghanayim A, Benisty H, Cohen Rimon A, Schwartz S, Dabdoob S, Lifshitz S Nat Commun. 2025; 16(1):200.

PMID: 39746993 PMC: 11696230. DOI: 10.1038/s41467-024-55317-4.


Immersive interfaces for clinical applications: current status and future perspective.

Chenais N, Gorgen A Front Neurorobot. 2024; 18:1362444.

PMID: 39664264 PMC: 11631914. DOI: 10.3389/fnbot.2024.1362444.


References
1.
Bathellier B, Ushakova L, Rumpel S . Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron. 2012; 76(2):435-49. DOI: 10.1016/j.neuron.2012.07.008. View

2.
Voorn P, Vanderschuren L, Groenewegen H, Robbins T, Pennartz C . Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 2004; 27(8):468-74. DOI: 10.1016/j.tins.2004.06.006. View

3.
Chen N, Sugihara H, Sur M . An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci. 2015; 18(6):892-902. PMC: 4446146. DOI: 10.1038/nn.4002. View

4.
Gaffan D, Harrison S . Inferotemporal-frontal disconnection and fornix transection in visuomotor conditional learning by monkeys. Behav Brain Res. 1988; 31(2):149-63. DOI: 10.1016/0166-4328(88)90018-6. View

5.
Murray E, Wise S . Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav Neurosci. 1996; 110(6):1261-70. DOI: 10.1037//0735-7044.110.6.1261. View