» Articles » PMID: 27870324

High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm

Overview
Journal ChemSusChem
Specialty Chemistry
Date 2016 Nov 22
PMID 27870324
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

This study systematically assessed intracellular electron transfer (IET) and extracellular electron transfer (EET) kinetics with respect to anode potential (E ) in a mixed-culture biofilm anode enriched with Geobacter spp. High biofilm conductivity (0.96-1.24 mS cm ) was maintained during E changes from -0.2 to +0.2 V versus the standard hydrogen electrode (SHE), although the steady-state current density significantly decreased from 2.05 to 0.35 A m in a microbial electrochemical cell. Substantial increase of the Treponema population was observed in the biofilm anode at E =+0.2 V, which reduced intracellular electron-transfer kinetics associated with the maximum specific substrate-utilization rate by a factor of ten. This result suggests that fast EET kinetics can be maintained under dynamic E conditions in a highly conductive biofilm anode as a result of shift of main EET players in the biofilm anode, although E changes can influence IET kinetics.

Citing Articles

Characterization and significance of extracellular polymeric substances, reactive oxygen species, and extracellular electron transfer in methanogenic biocathode.

Zakaria B, Dhar B Sci Rep. 2021; 11(1):7933.

PMID: 33846480 PMC: 8041852. DOI: 10.1038/s41598-021-87118-w.


Hydrogen peroxide production in a pilot-scale microbial electrolysis cell.

Sim J, Reid R, Hussain A, An J, Lee H Biotechnol Rep (Amst). 2018; 19:e00276.

PMID: 30197872 PMC: 6127372. DOI: 10.1016/j.btre.2018.e00276.


Microbial activity influences electrical conductivity of biofilm anode.

Dhar B, Sim J, Ryu H, Ren H, Santo Domingo J, Chae J Water Res. 2017; 127:230-238.

PMID: 29055828 PMC: 7321815. DOI: 10.1016/j.watres.2017.10.028.

References
1.
Gao Y, An J, Ryu H, Lee H . Microbial fuel cells as discontinuous portable power sources: syntropic interactions with anode-respiring bacteria. ChemSusChem. 2014; 7(4):1026-9. DOI: 10.1002/cssc.201301085. View

2.
Gao Y, Ryu H, Santo Domingo J, Lee H . Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells. Bioresour Technol. 2013; 153:245-53. DOI: 10.1016/j.biortech.2013.11.077. View

3.
Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K . The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol. 2008; 78(3):409-18. DOI: 10.1007/s00253-007-1327-8. View

4.
Wang Q, Garrity G, Tiedje J, Cole J . Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73(16):5261-7. PMC: 1950982. DOI: 10.1128/AEM.00062-07. View

5.
Torres C, Marcus A, Parameswaran P, Rittmann B . Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ Sci Technol. 2008; 42(17):6593-7. DOI: 10.1021/es800970w. View