» Articles » PMID: 27869131

Optical Computing for Optical Coherence Tomography

Overview
Journal Sci Rep
Specialty Science
Date 2016 Nov 22
PMID 27869131
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application.

Citing Articles

Dual-Channel Spectral Domain Optical Coherence Tomography Based on a Single Spectrometer Using Compressive Sensing.

Yi L, Sun L, Zou M, Hou B Sensors (Basel). 2019; 19(18).

PMID: 31527515 PMC: 6767665. DOI: 10.3390/s19184006.


Two-dimensional simulation of optical coherence tomography images.

Brenner T, Munro P, Kruger B, Kienle A Sci Rep. 2019; 9(1):12189.

PMID: 31434928 PMC: 6704163. DOI: 10.1038/s41598-019-48498-2.


Recovering distance information in spectral domain interferometry.

Bradu A, Israelsen N, Maria M, Marques M, Rivet S, Feuchter T Sci Rep. 2018; 8(1):15445.

PMID: 30337645 PMC: 6194011. DOI: 10.1038/s41598-018-33821-0.


Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations.

Xu J, Song S, Men S, Wang R J Biomed Opt. 2017; 22(11):1-11.

PMID: 29185292 PMC: 5712670. DOI: 10.1117/1.JBO.22.11.116007.

References
1.
Cuadrado-Laborde C, Carrascosa A, Diez A, Cruz J, Andres M . Photonic fractional Fourier transformer with a single dispersive device. Opt Express. 2013; 21(7):8558-63. DOI: 10.1364/OE.21.008558. View

2.
Ferrera M, Park Y, Razzari L, Little B, Chu S, Morandotti R . On-chip CMOS-compatible all-optical integrator. Nat Commun. 2010; 1:29. PMC: 2982162. DOI: 10.1038/ncomms1028. View

3.
Park Y, Azana J . Optical signal processors based on a time-spectrum convolution. Opt Lett. 2010; 35(6):796-8. DOI: 10.1364/OL.35.000796. View

4.
Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W . Optical coherence tomography. Science. 1991; 254(5035):1178-81. PMC: 4638169. DOI: 10.1126/science.1957169. View

5.
Choi D, Hiro-Oka H, Shimizu K, Ohbayashi K . Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second. Biomed Opt Express. 2012; 3(12):3067-86. PMC: 3521307. DOI: 10.1364/BOE.3.003067. View