» Articles » PMID: 27860455

Papaverine-sensitive Phosphodiesterase Activity is Measured in Bovine Spermatozoa

Overview
Journal Andrology
Date 2016 Nov 19
PMID 27860455
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Cyclic adenosine monophosphate (cAMP) plays a crucial role as a signaling molecule for capacitation, motility, and acrosome reaction in mammalian spermatozoa. It is well-known that cAMP degradation by phosphodiesterase (PDE) enzyme has a major impact on sperm functions. This study was undertaken to characterize cAMP-PDE activity in bovine spermatozoa. Total cAMP-PDE activity in cauda epididymal and ejaculated spermatozoa was 543.2 ± 49.5 and 1252.6 ± 86.5 fmoles/min/10 spermatozoa, respectively. Using different family-specific PDE inhibitors, we showed that in cauda epididymal and ejaculated spermatozoa, the major cAMP-PDE activity was papaverine-sensitive (44.5% and 57.5%, respectively, at 400 nm, papaverine is a specific inhibitor of the PDE10 family). These data are supporting the functional presence of PDE10 in bovine spermatozoa and were further confirmed by western blot to be PDE10A. Using immunocytochemistry, we showed immunoreactive signal for PDE10A present on the post-acrosomal region of the head and on the flagella of ejaculated spermatozoa. Using papaverine, we showed that it promotes tyrosine phosphorylation of sperm proteins, phosphorylation of Erk1 and Erk2, and Ca release from Ca store. These results suggest that PDE10 is functionally present in bovine spermatozoa and is affecting different molecular events involved in capacitation, most probably by cAMP local regulation.

Citing Articles

The cAMP signaling module regulates sperm motility in the liverwort .

Yamamoto C, Takahashi F, Suetsugu N, Yamada K, Yoshikawa S, Kohchi T Proc Natl Acad Sci U S A. 2024; 121(16):e2322211121.

PMID: 38593080 PMC: 11032487. DOI: 10.1073/pnas.2322211121.


Efficacy and safety of papaverine as an in vitro motility enhancer on human spermatozoa.

Ibis E, Hayme S, Baysal E, Gul N, Ozkavukcu S J Assist Reprod Genet. 2021; 38(6):1523-1537.

PMID: 33772411 PMC: 8266967. DOI: 10.1007/s10815-021-02160-x.