Wang L, Xie J, Zhang C, Zou J, Huang Z, Shang S
Nat Struct Mol Biol. 2025; .
PMID: 39890981
DOI: 10.1038/s41594-025-01484-x.
Malysheva D, Dymova M, Richter V
Biophys Rev. 2025; 16(6):685-700.
PMID: 39830127
PMC: 11735759.
DOI: 10.1007/s12551-024-01252-z.
Qiu X
Biol Methods Protoc. 2025; 10(1):bpae097.
PMID: 39811444
PMC: 11729747.
DOI: 10.1093/biomethods/bpae097.
Karan A, Rivas E
bioRxiv. 2025; .
PMID: 39764046
PMC: 11702757.
DOI: 10.1101/2024.12.17.628809.
Ruttiger A, Ryan D, Spiga L, Lamm-Schmidt V, Prezza G, Reichardt S
Nat Commun. 2025; 16(1):208.
PMID: 39747016
PMC: 11697453.
DOI: 10.1038/s41467-024-55383-8.
RNA elements required for the high efficiency of West Nile virus-induced ribosomal frameshifting.
Aleksashin N, Langeberg C, Shelke R, Yin T, Cate J
Nucleic Acids Res. 2024; 53(3).
PMID: 39698810
PMC: 11797035.
DOI: 10.1093/nar/gkae1248.
RNADiffFold: generative RNA secondary structure prediction using discrete diffusion models.
Wang Z, Feng Y, Tian Q, Liu Z, Yan P, Li X
Brief Bioinform. 2024; 26(1).
PMID: 39581872
PMC: 11586127.
DOI: 10.1093/bib/bbae618.
Continuous evolution of user-defined genes at 1 million times the genomic mutation rate.
Rix G, Williams R, Hu V, Spinner A, Pisera A, Marks D
Science. 2024; 386(6722):eadm9073.
PMID: 39509492
PMC: 11750425.
DOI: 10.1126/science.adm9073.
Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections.
McKinley L, Meyer M, Sebastian A, Chang B, Messina K, Albert I
Nucleic Acids Res. 2024; 52(22):14133-14153.
PMID: 39498486
PMC: 11662667.
DOI: 10.1093/nar/gkae908.
DecoyFinder: Identification of Contaminants in Sets of Homologous RNA Sequences.
Zhu M, Zuber J, Tan Z, Sharma G, Mathews D
bioRxiv. 2024; .
PMID: 39464058
PMC: 11507696.
DOI: 10.1101/2024.10.12.618037.
Intronic RNA secondary structural information captured for the human pre-mRNA.
Eich T, OLeary C, Moss W
NAR Genom Bioinform. 2024; 6(4):lqae143.
PMID: 39450312
PMC: 11500451.
DOI: 10.1093/nargab/lqae143.
Identification of RNA structures and their roles in RNA functions.
Cao X, Zhang Y, Ding Y, Wan Y
Nat Rev Mol Cell Biol. 2024; 25(10):784-801.
PMID: 38926530
DOI: 10.1038/s41580-024-00748-6.
Comparative RNA Genomics.
Backofen R, Gorodkin J, Hofacker I, Stadler P
Methods Mol Biol. 2024; 2802:347-393.
PMID: 38819565
DOI: 10.1007/978-1-0716-3838-5_12.
Towards parsimonious generative modeling of RNA families.
Calvanese F, Lambert C, Nghe P, Zamponi F, Weigt M
Nucleic Acids Res. 2024; 52(10):5465-5477.
PMID: 38661206
PMC: 11162787.
DOI: 10.1093/nar/gkae289.
Discovery and structural mechanism of DNA endonucleases guided by RAGATH-18-derived RNAs.
Ren K, Zhou F, Zhang F, Yin M, Zhu Y, Wang S
Cell Res. 2024; 34(5):370-385.
PMID: 38575718
PMC: 11061315.
DOI: 10.1038/s41422-024-00952-1.
The RNA secondary structure of androgen receptor-FL and V7 transcripts reveals novel regulatory regions.
Rouse W, Tompkins V, OLeary C, Moss W
Nucleic Acids Res. 2024; 52(11):6596-6613.
PMID: 38554103
PMC: 11194067.
DOI: 10.1093/nar/gkae220.
Limits of experimental evidence in RNA secondary structure prediction.
von Lohneysen S, Morl M, Stadler P
Front Bioinform. 2024; 4:1346779.
PMID: 38456157
PMC: 10918467.
DOI: 10.3389/fbinf.2024.1346779.
Deep Learning Techniques to Characterize the Pseudogene and the - Gene as Drug Potential Targets in Pancreatic Cancer Patients.
Salgado I, Prado Montes de Oca E, Chairez I, Figueroa-Yanez L, Pereira-Santana A, Rivera Chavez A
Biomedicines. 2024; 12(2).
PMID: 38397997
PMC: 11154313.
DOI: 10.3390/biomedicines12020395.
Deep generative design of RNA family sequences.
Sumi S, Hamada M, Saito H
Nat Methods. 2024; 21(3):435-443.
PMID: 38238559
DOI: 10.1038/s41592-023-02148-8.
Concurrent prediction of RNA secondary structures with pseudoknots and local 3D motifs in an integer programming framework.
Loyer G, Reinharz V
Bioinformatics. 2024; 40(2).
PMID: 38230755
PMC: 10868335.
DOI: 10.1093/bioinformatics/btae022.