» Articles » PMID: 27819266

Cryo-EM Study of Start Codon Selection During Archaeal Translation Initiation

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Nov 8
PMID 27819266
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNA) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2.

Citing Articles

Structures of Saccharolobus solfataricus initiation complexes with leaderless mRNAs highlight archaeal features and eukaryotic proximity.

Bourgeois G, Coureux P, Lazennec-Schurdevin C, Madru C, Gaillard T, Duchateau M Nat Commun. 2025; 16(1):348.

PMID: 39753558 PMC: 11698992. DOI: 10.1038/s41467-024-55718-5.


Structural basis of translation inhibition by a valine tRNA-derived fragment.

Wu Y, Ni M, Wang Y, Wang C, Hou H, Zhang X Life Sci Alliance. 2024; 7(6).

PMID: 38599770 PMC: 11009984. DOI: 10.26508/lsa.202302488.


Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome.

Wang Y, Dai H, Zhang L, Wu Y, Wang J, Wang C Nucleic Acids Res. 2023; 51(17):8909-8924.

PMID: 37604686 PMC: 10516650. DOI: 10.1093/nar/gkad661.


Grid batch-dependent tuning of glow discharge parameters.

Kazan R, Bourgeois G, Carisetti D, Florea I, Larquet E, Maurice J Front Mol Biosci. 2022; 9:910218.

PMID: 36060254 PMC: 9436422. DOI: 10.3389/fmolb.2022.910218.


Role of aIF5B in archaeal translation initiation.

Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux P Nucleic Acids Res. 2022; 50(11):6532-6548.

PMID: 35694843 PMC: 9226500. DOI: 10.1093/nar/gkac490.


References
1.
Sokabe M, Yao M, Sakai N, Toya S, Tanaka I . Structure of archaeal translational initiation factor 2 betagamma-GDP reveals significant conformational change of the beta-subunit and switch 1 region. Proc Natl Acad Sci U S A. 2006; 103(35):13016-21. PMC: 1559745. DOI: 10.1073/pnas.0604165103. View

2.
Amunts A, Brown A, Bai X, Llacer J, Hussain T, Emsley P . Structure of the yeast mitochondrial large ribosomal subunit. Science. 2014; 343(6178):1485-1489. PMC: 4046073. DOI: 10.1126/science.1249410. View

3.
Saini A, Nanda J, Lorsch J, Hinnebusch A . Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev. 2010; 24(1):97-110. PMC: 2802195. DOI: 10.1101/gad.1871910. View

4.
Asano K, Shalev A, Phan L, Nielsen K, Clayton J, Valasek L . Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J. 2001; 20(9):2326-37. PMC: 125443. DOI: 10.1093/emboj/20.9.2326. View

5.
Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux P, Perez J, Thompson A . Structure of the ternary initiation complex aIF2-GDPNP-methionylated initiator tRNA. Nat Struct Mol Biol. 2012; 19(4):450-4. DOI: 10.1038/nsmb.2259. View