» Articles » PMID: 27798768

Network-based Expression Analysis Reveals Key Genes Related to Glucocorticoid Resistance in Infant Acute Lymphoblastic Leukemia

Overview
Publisher Springer
Date 2016 Nov 1
PMID 27798768
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Despite vast improvements that have been made in the treatment of children with acute lymphoblastic leukemia (ALL), the majority of infant ALL patients (~80 %, < 1 year of age) that carry a chromosomal translocation involving the mixed lineage leukemia (MLL) gene shows a poor response to chemotherapeutic drugs, especially glucocorticoids (GCs), which are essential components of all current treatment regimens. Although addressed in several studies, the mechanism(s) underlying this phenomenon have remained largely unknown. A major drawback of most previous studies is their primary focus on individual genes, thereby neglecting the putative significance of inter-gene correlations. Here, we aimed at studying GC resistance in MLL-rearranged infant ALL patients by inferring an associated module of genes using co-expression network analysis. The implications of newly identified candidate genes with associations to other well-known relevant genes from the same module, or with associations to known transcription factor or microRNA interactions, were substantiated using literature data.

Methods: A weighted gene co-expression network was constructed to identify gene modules associated with GC resistance in MLL-rearranged infant ALL patients. Significant gene ontology (GO) terms and signaling pathways enriched in relevant modules were used to provide guidance towards which module(s) consisted of promising candidates suitable for further analysis.

Results: Through gene co-expression network analysis a novel set of genes (module) related to GC-resistance was identified. The presence in this module of the S100 and ANXA genes, both well-known biomarkers for GC resistance in MLL-rearranged infant ALL, supports its validity. Subsequent gene set net correlation analyses of the novel module provided further support for its validity by showing that the S100 and ANXA genes act as 'hub' genes with potentially major regulatory roles in GC sensitivity, but having lost this role in the GC resistant phenotype. The detected module implicates new genes as being candidates for further analysis through associations with known GC resistance-related genes.

Conclusions: From our data we conclude that available systems biology approaches can be employed to detect new candidate genes that may provide further insights into drug resistance of MLL-rearranged infant ALL cases. Such approaches complement conventional gene-wise approaches by taking putative functional interactions between genes into account.

Citing Articles

Patient-specific analysis of co-expression to measure biological network rewiring in individuals.

Wei L, Xin Y, Pu M, Zhang Y Life Sci Alliance. 2023; 7(2).

PMID: 37977656 PMC: 10656351. DOI: 10.26508/lsa.202302253.


MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia.

Mendiola-Soto D, Barcenas-Lopez D, Perez-Amado C, Cruz-Miranda G, Mejia-Arangure J, Ramirez-Bello J Int J Mol Sci. 2023; 24(6).

PMID: 36982511 PMC: 10049736. DOI: 10.3390/ijms24065436.


LncRNA Uc003xsl.1-Mediated Activation of the NFκB/IL8 Axis Promotes Progression of Triple-Negative Breast Cancer.

Xu Y, Ren W, Li Q, Duan C, Lin X, Bi Z Cancer Res. 2021; 82(4):556-570.

PMID: 34965935 PMC: 9359739. DOI: 10.1158/0008-5472.CAN-21-1446.


Co-expression Network Analysis Reveals Key Genes Related to Ankylosing spondylitis Arthritis Disease: Computational and Experimental Validation.

Najafzadeh L, Mahmoudi M, Ebadi M, Shasaltaneh M Iran J Biotechnol. 2021; 19(1):e2630.

PMID: 34179194 PMC: 8217537. DOI: 10.30498/IJB.2021.2630.


Investigation of lncRNA-mRNA co-expression network in ETV6-RUNX1-positive pediatric B-cell acute lymphoblastic leukemia.

Yu W, Wang W, Yu X PLoS One. 2021; 16(6):e0253012.

PMID: 34101758 PMC: 8186766. DOI: 10.1371/journal.pone.0253012.


References
1.
Choi Y, Kendziorski C . Statistical methods for gene set co-expression analysis. Bioinformatics. 2009; 25(21):2780-6. PMC: 2781749. DOI: 10.1093/bioinformatics/btp502. View

2.
Stam R, den Boer M, Schneider P, de Boer J, Hagelstein J, Valsecchi M . Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2009; 115(5):1018-25. DOI: 10.1182/blood-2009-02-205963. View

3.
Nam S, Chang H, Jung H, Gim Y, Kim N, Grailhe R . A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer. Cancer Lett. 2014; 356(2 Pt B):880-90. DOI: 10.1016/j.canlet.2014.10.038. View

4.
Szczepanek J, Pogorzala M, Jarzab M, Oczko-Wojciechowska M, Kowalska M, Tretyn A . Expression profiles of signal transduction genes in ex vivo drug-resistant pediatric acute lymphoblastic leukemia. Anticancer Res. 2012; 32(2):503-6. View

5.
Greaves M . Infant leukaemia biology, aetiology and treatment. Leukemia. 1996; 10(2):372-7. View