» Articles » PMID: 27765946

Multivariate Synaptic and Behavioral Profiling Reveals New Developmental Endophenotypes in the Prefrontal Cortex

Overview
Journal Sci Rep
Specialty Science
Date 2016 Oct 22
PMID 27765946
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The postnatal maturation of the prefrontal cortex (PFC) represents a period of increased vulnerability to risk factors and emergence of neuropsychiatric disorders. To disambiguate the pathophysiological mechanisms contributing to these disorders, we revisited the endophenotype approach from a developmental viewpoint. The extracellular matrix protein reelin which contributes to cellular and network plasticity, is a risk factor for several psychiatric diseases. We mapped the aggregate effect of the RELN risk allele on postnatal development of PFC functions by cross-sectional synaptic and behavioral analysis of reelin-haploinsufficient mice. Multivariate analysis of bootstrapped datasets revealed subgroups of phenotypic traits specific to each maturational epoch. The preeminence of synaptic AMPA/NMDA receptor content to pre-weaning and juvenile endophenotypes shifts to long-term potentiation and memory renewal during adolescence followed by NMDA-GluN2B synaptic content in adulthood. Strikingly, multivariate analysis shows that pharmacological rehabilitation of reelin haploinsufficient dysfunctions is mediated through induction of new endophenotypes rather than reversion to wild-type traits. By delineating previously unknown developmental endophenotypic sequences, we conceived a promising general strategy to disambiguate the molecular underpinnings of complex psychiatric disorders and for the rational design of pharmacotherapies in these disorders.

Citing Articles

Reelin Deficiency and Synaptic Impairment in the Adolescent Prefrontal Cortex Following Initial Synthetic Cannabinoid Exposure.

Silva-Hurtado T, Giua G, Lassalle O, Makrini-Maleville L, Strauss B, Wager-Miller J Biol Psychiatry Glob Open Sci. 2025; 5(2):100426.

PMID: 39926699 PMC: 11804564. DOI: 10.1016/j.bpsgos.2024.100426.


Reelin Signaling in Neurodevelopmental Disorders and Neurodegenerative Diseases.

Joly-Amado A, Kulkarni N, Nash K Brain Sci. 2023; 13(10).

PMID: 37891846 PMC: 10605156. DOI: 10.3390/brainsci13101479.


Sexually Dimorphic Adolescent Trajectories of Prefrontal Endocannabinoid Synaptic Plasticity Equalize in Adulthood, Reflected by Endocannabinoid System Gene Expression.

Bernabeu A, Bara A, Murphy Green M, Manduca A, Wager-Miller J, Borsoi M Cannabis Cannabinoid Res. 2023; 8(5):749-767.

PMID: 37015060 PMC: 10701511. DOI: 10.1089/can.2022.0308.


Sex-specific divergent maturational trajectories in the postnatal rat basolateral amygdala.

Guily P, Lassalle O, Chavis P, Manzoni O iScience. 2022; 25(2):103815.

PMID: 35198880 PMC: 8841815. DOI: 10.1016/j.isci.2022.103815.


A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action.

Kim J, Herz J, Kavalali E, Monteggia L Proc Natl Acad Sci U S A. 2021; 118(20).

PMID: 33975959 PMC: 8157952. DOI: 10.1073/pnas.2103079118.


References
1.
Hirsch J, Crepel F . Blockade of NMDA receptors unmasks a long-term depression in synaptic efficacy in rat prefrontal neurons in vitro. Exp Brain Res. 1991; 85(3):621-4. DOI: 10.1007/BF00231747. View

2.
Sekine K, Kubo K, Nakajima K . How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex?. Neurosci Res. 2014; 86:50-8. DOI: 10.1016/j.neures.2014.06.004. View

3.
Bellone C, Nicoll R . Rapid bidirectional switching of synaptic NMDA receptors. Neuron. 2007; 55(5):779-85. DOI: 10.1016/j.neuron.2007.07.035. View

4.
Quinlan E, Philpot B, Huganir R, Bear M . Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999; 2(4):352-7. DOI: 10.1038/7263. View

5.
Kendler K, Neale M . Endophenotype: a conceptual analysis. Mol Psychiatry. 2010; 15(8):789-97. PMC: 2909487. DOI: 10.1038/mp.2010.8. View