» Articles » PMID: 27720988

Salt-inducible Protein Splicing in Cis and Trans by Inteins from Extremely Halophilic Archaea As a Novel Protein-Engineering Tool

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2016 Oct 11
PMID 27720988
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Intervening protein sequences (inteins) from extremely halophilic haloarchaea can be inactive under low salinity but could be activated by increasing the salt content to a specific concentration for each intein. The halo-obligatory inteins confer high solubility under both low and high salinity conditions. We showed the broad utility of salt-dependent protein splicing in cis and trans by demonstrating backbone cyclization, self-cleavage for purification, and scarless protein ligation for segmental isotopic labeling. Artificially split MCM2 intein derived from Halorhabdus utahensis remained highly soluble and was capable of protein trans-splicing with excellent ligation kinetics by reassembly under high salinity conditions. Importantly, the MCM2 intein has the active site residue of Ser at the +1 position, which remains in the ligated product, instead of Cys as found in many other efficient split inteins. Since Ser is more abundant than Cys in proteins, the novel split intein could widen the applications of segmental labeling in protein NMR spectroscopy and traceless protein ligation by exploiting a Ser residue in the native sequences as the +1 position of the MCM2 intein. The split halo-obligatory intein was successfully used to demonstrate the utility in NMR investigation of intact proteins by producing segmentally isotope-labeled intact TonB protein from Helicobacter pylori.

Citing Articles

Conditional Split Inteins: Adaptable Tools for Programming Protein Functions.

Shepherd C, Lawson-Williams M, Holland A, Bello A, Sexton D, Olorunniji F Int J Mol Sci. 2025; 26(2).

PMID: 39859302 PMC: 11766414. DOI: 10.3390/ijms26020586.


Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability.

Lin T, Ge Y, Gao Q, Zhang D, Chen X, Hu Y J Microbiol Biotechnol. 2023; 33(12):1681-1691.

PMID: 37789714 PMC: 10772547. DOI: 10.4014/jmb.2305.05011.


Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics.

Wang Y, Shi Y, Hellinga H, Beese L Nucleic Acids Res. 2023; 51(11):5883-5894.

PMID: 37166959 PMC: 10287962. DOI: 10.1093/nar/gkad368.


Conditional Alternative Protein Splicing Promoted by Inteins from .

Yalala V, Lynch A, Mills K Biochemistry. 2022; 61(4):294-302.

PMID: 35073064 PMC: 8847336. DOI: 10.1021/acs.biochem.1c00788.


The Inducible Intein-Mediated Self-Cleaving Tag (IIST) System: A Novel Purification and Amidation System for Peptides and Proteins.

Aranko A, Iwai H Molecules. 2021; 26(19).

PMID: 34641492 PMC: 8512742. DOI: 10.3390/molecules26195948.