6.
Anastassov S, Filo M, Khammash M
. Inteins: A Swiss army knife for synthetic biology. Biotechnol Adv. 2024; 73:108349.
DOI: 10.1016/j.biotechadv.2024.108349.
View
7.
Li X, Zhang X, Cai Y, Zhang L, Lin Y, Meng Q
. Site specific labeling of two proteins in one system by atypical split inteins. Int J Biol Macromol. 2017; 109:921-931.
DOI: 10.1016/j.ijbiomac.2017.11.077.
View
8.
Ren W, Ji A, Ai H
. Light activation of protein splicing with a photocaged fast intein. J Am Chem Soc. 2015; 137(6):2155-8.
DOI: 10.1021/ja508597d.
View
9.
Gramespacher J, Burton A, Guerra L, Muir T
. Proximity Induced Splicing Utilizing Caged Split Inteins. J Am Chem Soc. 2019; 141(35):13708-13712.
PMC: 6903685.
DOI: 10.1021/jacs.9b05721.
View
10.
Novikova O, Topilina N, Belfort M
. Enigmatic distribution, evolution, and function of inteins. J Biol Chem. 2014; 289(21):14490-7.
PMC: 4031506.
DOI: 10.1074/jbc.R114.548255.
View
11.
Sevillano E, Lafuente I, Pena N, Cintas L, Munoz-Atienza E, Hernandez P
. Isolation, Genomics-Based and Biochemical Characterization of Bacteriocinogenic Bacteria and Their Bacteriocins, Sourced from the Gastrointestinal Tract of Meat-Producing Pigs. Int J Mol Sci. 2024; 25(22).
PMC: 11594732.
DOI: 10.3390/ijms252212210.
View
12.
Ferreira M, Fernandes S, Almeida A, Neto S, Mendes J, Silva R
. Extending AAV Packaging Cargo through Dual Co-Transduction: Efficient Protein Trans-Splicing at Low Vector Doses. Int J Mol Sci. 2023; 24(13).
PMC: 10341399.
DOI: 10.3390/ijms241310524.
View
13.
Shi J, Muir T
. Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc. 2005; 127(17):6198-206.
DOI: 10.1021/ja042287w.
View
14.
Carvajal-Vallejos P, Pallisse R, Mootz H, Schmidt S
. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem. 2012; 287(34):28686-96.
PMC: 3436554.
DOI: 10.1074/jbc.M112.372680.
View
15.
Matern J, Bachmann A, Thiel I, Volkmann G, Wasmuth A, Binschik J
. Ligation of synthetic peptides to proteins using semisynthetic protein trans-splicing. Methods Mol Biol. 2015; 1266:129-43.
DOI: 10.1007/978-1-4939-2272-7_9.
View
16.
Shah N, Eryilmaz E, Cowburn D, Muir T
. Extein residues play an intimate role in the rate-limiting step of protein trans-splicing. J Am Chem Soc. 2013; 135(15):5839-47.
PMC: 3630739.
DOI: 10.1021/ja401015p.
View
17.
Zhang X, Liu X, Meng Q
. Engineered DnaX inteins for protein splicing with flanking proline residues. Saudi J Biol Sci. 2019; 26(4):854-859.
PMC: 6486613.
DOI: 10.1016/j.sjbs.2017.07.010.
View
18.
Inobe T, Nukina N
. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins. J Biosci Bioeng. 2016; 122(1):40-6.
DOI: 10.1016/j.jbiosc.2015.12.004.
View
19.
Beyer H, Mikula K, Li M, Wlodawer A, Iwai H
. The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins. FEBS J. 2019; 287(9):1886-1898.
PMC: 7190452.
DOI: 10.1111/febs.15113.
View
20.
Qi X, Wang J, Meng Q, Liu X
. Alternative nucleophilic residues in intein catalysis of protein splicing. Protein Pept Lett. 2011; 18(12):1226-32.
DOI: 10.2174/092986611797642760.
View