» Articles » PMID: 27708285

Evolutionary Trajectories of Snake Genes and Genomes Revealed by Comparative Analyses of Five-pacer Viper

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Oct 7
PMID 27708285
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Snakes have numerous features distinctive from other tetrapods and a rich history of genome evolution that is still obscure. Here, we report the high-quality genome of the five-pacer viper, Deinagkistrodon acutus, and comparative analyses with other representative snake and lizard genomes. We map the evolutionary trajectories of transposable elements (TEs), developmental genes and sex chromosomes onto the snake phylogeny. TEs exhibit dynamic lineage-specific expansion, and many viper TEs show brain-specific gene expression along with their nearby genes. We detect signatures of adaptive evolution in olfactory, venom and thermal-sensing genes and also functional degeneration of genes associated with vision and hearing. Lineage-specific relaxation of functional constraints on respective Hox and Tbx limb-patterning genes supports fossil evidence for a successive loss of forelimbs then hindlimbs during snake evolution. Finally, we infer that the ZW sex chromosome pair had undergone at least three recombination suppression events in the ancestor of advanced snakes. These results altogether forge a framework for our deep understanding into snakes' history of molecular evolution.

Citing Articles

The proteotranscriptomic characterization of venom in the white seafan elucidates the evolution of Octocorallia arsenal.

Modica M, Leone S, Gerdol M, Greco S, Aurelle D, Oliverio M Open Biol. 2025; 15(3):250015.

PMID: 40068811 PMC: 11896702. DOI: 10.1098/rsob.250015.


Genome Report: First whole genome assembly of (ball python), a model of extreme physiological and metabolic plasticity.

Hunt D, Allen H, Martin T, Feghali S, Chuong E, Leinwand L bioRxiv. 2025; .

PMID: 39975114 PMC: 11838433. DOI: 10.1101/2025.02.01.635752.


Sex Chromosome Turnovers and Stability in Snakes.

Psenicka T, Augstenova B, Frynta D, Kornilios P, Kratochvil L, Rovatsos M Mol Biol Evol. 2024; 42(1).

PMID: 39671568 PMC: 11721783. DOI: 10.1093/molbev/msae255.


Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution.

Hirst S, Rautsaw R, VanHorn C, Beer M, McDonald P, Rosales Garcia R Genome Biol Evol. 2024; 16(9).

PMID: 39255072 PMC: 11440179. DOI: 10.1093/gbe/evae198.


The genome assembly and annotation of the white-lipped tree pit viper .

Niu X, Lv Y, Chen J, Feng Y, Cui Y, Lu H GigaByte. 2024; 2024:gigabyte106.

PMID: 38313188 PMC: 10836062. DOI: 10.46471/gigabyte.106.


References
1.
Vicoso B, Emerson J, Zektser Y, Mahajan S, Bachtrog D . Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013; 11(8):e1001643. PMC: 3754893. DOI: 10.1371/journal.pbio.1001643. View

2.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J . SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2013; 1(1):18. PMC: 3626529. DOI: 10.1186/2047-217X-1-18. View

3.
Castoe T, de Koning A, Hall K, Card D, Schield D, Fujita M . The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013; 110(51):20645-50. PMC: 3870669. DOI: 10.1073/pnas.1314475110. View

4.
KROGH A, Larsson B, von Heijne G, Sonnhammer E . Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001; 305(3):567-80. DOI: 10.1006/jmbi.2000.4315. View

5.
Cohn M, Tickle C . Developmental basis of limblessness and axial patterning in snakes. Nature. 1999; 399(6735):474-9. DOI: 10.1038/20944. View