Latent Class Analysis of Incomplete Data Via an Entropy-Based Criterion
Overview
Affiliations
Latent class analysis is used to group categorical data into classes via a probability model. Model selection criteria then judge how well the model fits the data. When addressing incomplete data, the current methodology restricts the imputation to a single, pre-specified number of classes. We seek to develop an entropy-based model selection criterion that does not restrict the imputation to one number of clusters. Simulations show the new criterion performing well against the current standards of AIC and BIC, while a family studies application demonstrates how the criterion provides more detailed and useful results than AIC and BIC.
Classifying intentions for carbon neutrality participation through latent class analysis.
Lee J, Kwon S, Park H, Zhang K, Lu W, Dong L Heliyon. 2024; 10(24):e40721.
PMID: 39720056 PMC: 11667602. DOI: 10.1016/j.heliyon.2024.e40721.
Proteus effect avatar profiles: Associations with disordered gaming and activity levels.
Hein K, Burleigh T, Gorman A, Prokofieva M, Stavropoulos V Addict Behav Rep. 2024; 20:100562.
PMID: 39219743 PMC: 11362772. DOI: 10.1016/j.abrep.2024.100562.
Gaming Disorder: The role of a gamers flow profile.
Footitt T, Christofi N, Poulus D, Colder Carras M, Stavropoulos V Addict Behav Rep. 2024; 19:100555.
PMID: 38952851 PMC: 11215001. DOI: 10.1016/j.abrep.2024.100555.
Wang Y, Xu X, Liu J, Lv Q, Chang H, He Y BMC Geriatr. 2024; 24(1):83.
PMID: 38254009 PMC: 10804623. DOI: 10.1186/s12877-023-04631-5.
Tullett-Prado D, Stavropoulos V, Gomez R, Doley J Addict Behav Rep. 2023; 17:100479.
PMID: 36748081 PMC: 9898019. DOI: 10.1016/j.abrep.2023.100479.