Latent Class Regression: Inference and Estimation with Two-stage Multiple Imputation
Overview
Authors
Affiliations
Latent class regression (LCR) is a popular method for analyzing multiple categorical outcomes. While nonresponse to the manifest items is a common complication, inferences of LCR can be evaluated using maximum likelihood, multiple imputation, and two-stage multiple imputation. Under similar missing data assumptions, the estimates and variances from all three procedures are quite close. However, multiple imputation and two-stage multiple imputation can provide additional information: estimates for the rates of missing information. The methodology is illustrated using an example from a study on racial and ethnic disparities in breast cancer severity.
Badejo O, Wouters E, van Belle S, Buve A, Smekens T, Jwanle P PLoS One. 2024; 19(4):e0300220.
PMID: 38635546 PMC: 11025812. DOI: 10.1371/journal.pone.0300220.
Ahmadabad A, Jahangiry L, Gilani N, Farhangi M, Mohammadi E, Ponnet K BMC Geriatr. 2024; 24(1):36.
PMID: 38191298 PMC: 10775447. DOI: 10.1186/s12877-024-04659-1.
Lee M, Rahbar M, Gensler L, Brown M, Weisman M, Reveille J J Biopharm Stat. 2019; 30(1):160-177.
PMID: 31730441 PMC: 6957759. DOI: 10.1080/10543406.2019.1684306.
Latent Class Analysis of Incomplete Data via an Entropy-Based Criterion.
Larose C, Harel O, Kordas K, Dey D Stat Methodol. 2016; 32:107-121.
PMID: 27695391 PMC: 5042216. DOI: 10.1016/j.stamet.2016.04.004.
Jamali J, Roustaei N, Taghi Ayatollahi S, Sadeghi E Nurs Midwifery Stud. 2015; 4(2):e28017.
PMID: 26339670 PMC: 4557411. DOI: 10.17795/nmsjournal28017.