» Articles » PMID: 27653489

Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2016 Sep 23
PMID 27653489
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

Citing Articles

Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?.

Horvath B, Szentandrassy N, Almassy J, Dienes C, Kovacs Z, Nanasi P Pharmaceuticals (Basel). 2022; 15(2).

PMID: 35215342 PMC: 8879921. DOI: 10.3390/ph15020231.


Mechanoelectric coupling and arrhythmogenesis in cardiomyocytes contracting under mechanical afterload in a 3D viscoelastic hydrogel.

Hegyi B, Shimkunas R, Jian Z, Izu L, Bers D, Chen-Izu Y Proc Natl Acad Sci U S A. 2021; 118(31).

PMID: 34326268 PMC: 8346795. DOI: 10.1073/pnas.2108484118.


Intracellular Na Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An Analysis.

Morotti S, Ni H, Peters C, Rickert C, Asgari-Targhi A, Sato D Int J Mol Sci. 2021; 22(11).

PMID: 34073281 PMC: 8198068. DOI: 10.3390/ijms22115645.


Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia.

Hamilton S, Terentyeva R, Clements R, Belevych A, Terentyev D J Mol Cell Cardiol. 2021; 156:105-113.

PMID: 33857485 PMC: 8217367. DOI: 10.1016/j.yjmcc.2021.04.002.


Altered K current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation.

Hegyi B, Chen-Izu Y, Izu L, Banyasz T Can J Physiol Pharmacol. 2019; 97(8):773-780.

PMID: 31091413 PMC: 10286692. DOI: 10.1139/cjpp-2019-0056.


References
1.
Donoso P, Mill J, ONeill S, Eisner D . Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes. J Physiol. 1992; 448:493-509. PMC: 1176211. DOI: 10.1113/jphysiol.1992.sp019053. View

2.
Barry P . JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Methods. 1994; 51(1):107-16. DOI: 10.1016/0165-0270(94)90031-0. View

3.
Carmeliet E . A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells?. Cardiovasc Res. 1992; 26(5):433-42. DOI: 10.1093/cvr/26.5.433. View

4.
Despa S, Bers D . Na⁺ transport in the normal and failing heart - remember the balance. J Mol Cell Cardiol. 2013; 61:2-10. PMC: 3720717. DOI: 10.1016/j.yjmcc.2013.04.011. View

5.
Banyasz T, Horvath B, Jian Z, Izu L, Chen-Izu Y . Profile of L-type Ca(2+) current and Na(+)/Ca(2+) exchange current during cardiac action potential in ventricular myocytes. Heart Rhythm. 2011; 9(1):134-42. PMC: 3252888. DOI: 10.1016/j.hrthm.2011.08.029. View