» Articles » PMID: 27616327

Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations

Overview
Journal Sci Rep
Specialty Science
Date 2016 Sep 13
PMID 27616327
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

Citing Articles

Mapping the determinants of catalysis and substrate specificity of the antibiotic resistance enzyme CTX-M β-lactamase.

Judge A, Hu L, Sankaran B, Van Riper J, Prasad B, Palzkill T Commun Biol. 2023; 6(1):35.

PMID: 36635385 PMC: 9837174. DOI: 10.1038/s42003-023-04422-z.


Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1.

Sun Z, Palzkill T mBio. 2021; 12(6):e0277621.

PMID: 34781730 PMC: 8593676. DOI: 10.1128/mBio.02776-21.


Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.

Bahr G, Gonzalez L, Vila A Chem Rev. 2021; 121(13):7957-8094.

PMID: 34129337 PMC: 9062786. DOI: 10.1021/acs.chemrev.1c00138.


Broad spectrum antibiotic-degrading metallo-β-lactamases are phylogenetically diverse.

Pedroso M, Waite D, Melse O, Wilson L, Mitic N, McGeary R Protein Cell. 2020; 11(8):613-617.

PMID: 32542533 PMC: 7381538. DOI: 10.1007/s13238-020-00736-4.


Mutational Effects on Carbapenem Hydrolysis of YEM-1, a New Subclass B2 Metallo-β-Lactamase from Yersinia mollaretii.

Mercuri P, Esposito R, Bletard S, Di Costanzo S, Perilli M, Kerff F Antimicrob Agents Chemother. 2020; 64(9).

PMID: 32540974 PMC: 7449184. DOI: 10.1128/AAC.00105-20.


References
1.
Hernandez Valladares M, Felici A, Weber G, Adolph H, Zeppezauer M, Rossolini G . Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Biochemistry. 1997; 36(38):11534-41. DOI: 10.1021/bi971056h. View

2.
Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila A, Carloni P . Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme. J Biol Chem. 2009; 284(41):28164-28171. PMC: 2788867. DOI: 10.1074/jbc.M109.049502. View

3.
Zhang Z, Yu Y, Musser J, Palzkill T . Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. J Biol Chem. 2001; 276(49):46568-74. DOI: 10.1074/jbc.M102757200. View

4.
Huang W, Petrosino J, Hirsch M, Shenkin P, Palzkill T . Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 1996; 258(4):688-703. DOI: 10.1006/jmbi.1996.0279. View

5.
Fowler D, Fields S . Deep mutational scanning: a new style of protein science. Nat Methods. 2014; 11(8):801-7. PMC: 4410700. DOI: 10.1038/nmeth.3027. View