» Articles » PMID: 27595887

Melanin-concentrating Hormone Neurons Specifically Promote Rapid Eye Movement Sleep in Mice

Overview
Journal Neuroscience
Specialty Neurology
Date 2016 Sep 7
PMID 27595887
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Currently available evidence indicates that neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamus are critical modulators of sleep-wakefulness, but their precise role in this function is not clear. Studies employing optogenetic stimulation of MCH neurons have yielded inconsistent results, presumably due to differences in the optogenetic stimulation protocols, which do not approximate normal patterns of cell firing. In order to resolve this discrepancy, we (1) selectively activated the MCH neurons using a chemogenetic approach (Cre-dependent hM3Dq expression) and (2) selectively destroyed MCH neurons using a genetically targeted diphtheria toxin deletion method, and studied the changes in sleep-wake in mice. Our results indicate that selective activation of MCH neurons causes specific increases in rapid eye movement (REM) sleep without altering wake or non-REM (NREM) sleep. On the other hand, selective deletions of MCH neurons altered the diurnal rhythm of wake and REM sleep without altering their total amounts. These results indicate that activation of MCH neurons primarily drives REM sleep and their presence may be necessary for normal expression of diurnal variation of REM sleep and wake.

Citing Articles

Role of Hypothalamus in Acupuncture's Effects.

Bae R, Kim H, Lu B, Ma J, Xing J, Kim H Brain Sci. 2025; 15(1).

PMID: 39851439 PMC: 11763592. DOI: 10.3390/brainsci15010072.


Regulation of wakefulness by neurotensin neurons in the lateral hypothalamus.

Naganuma F, Khanday M, Bandaru S, Hasan W, Hirano K, Yoshikawa T Exp Neurol. 2024; 383:115035.

PMID: 39481513 PMC: 11611607. DOI: 10.1016/j.expneurol.2024.115035.


Ventral subiculum promotes wakefulness through several pathways in male mice.

Zhang X, Li Y, Li Y, Li Y, Xu D, Bi L Neuropsychopharmacology. 2024; 49(9):1468-1480.

PMID: 38734818 PMC: 11251017. DOI: 10.1038/s41386-024-01875-6.


Neural Control of REM Sleep and Motor Atonia: Current Perspectives.

Vetrivelan R, Bandaru S Curr Neurol Neurosci Rep. 2023; 23(12):907-923.

PMID: 38060134 PMC: 11891935. DOI: 10.1007/s11910-023-01322-x.


Orexin and MCH neurons: regulators of sleep and metabolism.

Bouaouda H, Jha P Front Neurosci. 2023; 17:1230428.

PMID: 37674517 PMC: 10478345. DOI: 10.3389/fnins.2023.1230428.


References
1.
Vujovic N, Gooley J, Jhou T, Saper C . Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol. 2015; 523(18):2714-37. PMC: 4607558. DOI: 10.1002/cne.23812. View

2.
Lu J, Sherman D, Devor M, Saper C . A putative flip-flop switch for control of REM sleep. Nature. 2006; 441(7093):589-94. DOI: 10.1038/nature04767. View

3.
Astrand A, Bohlooly-Y M, Larsdotter S, Mahlapuu M, Andersen H, Tornell J . Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity. Am J Physiol Regul Integr Comp Physiol. 2004; 287(4):R749-58. DOI: 10.1152/ajpregu.00134.2004. View

4.
Kantor S, Mochizuki T, Janisiewicz A, Clark E, Nishino S, Scammell T . Orexin neurons are necessary for the circadian control of REM sleep. Sleep. 2009; 32(9):1127-34. PMC: 2737570. DOI: 10.1093/sleep/32.9.1127. View

5.
Boucetta S, Cisse Y, Mainville L, Morales M, Jones B . Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 2014; 34(13):4708-27. PMC: 3965793. DOI: 10.1523/JNEUROSCI.2617-13.2014. View