6.
Maestri M, Romigi A, Schirru A, Fabbrini M, Gori S, Bonuccelli U
. Excessive daytime sleepiness and fatigue in neurological disorders. Sleep Breath. 2019; 24(2):413-424.
DOI: 10.1007/s11325-019-01921-4.
View
7.
Diniz Behn C, Klerman E, Mochizuki T, Lin S, Scammell T
. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep. 2010; 33(3):297-306.
PMC: 2831423.
DOI: 10.1093/sleep/33.3.297.
View
8.
Blanco-Centurion C, Gerashchenko D, Shiromani P
. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci. 2007; 27(51):14041-8.
PMC: 2975593.
DOI: 10.1523/JNEUROSCI.3217-07.2007.
View
9.
Tabuchi S, Tsunematsu T, Black S, Tominaga M, Maruyama M, Takagi K
. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci. 2014; 34(19):6495-509.
PMC: 4012309.
DOI: 10.1523/JNEUROSCI.0073-14.2014.
View
10.
Hawley C, Gale T, Sivakumaran T, Paul S, Kondan V, Farag A
. Excessive daytime sleepiness in psychiatric disorders: Prevalence, correlates and clinical significance. Psychiatry Res. 2009; 175(1-2):138-41.
DOI: 10.1016/j.psychres.2008.10.037.
View
11.
Hassani O, Henny P, Lee M, Jones B
. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci. 2010; 32(3):448-57.
PMC: 2921479.
DOI: 10.1111/j.1460-9568.2010.07295.x.
View
12.
Leger D, Stepnowsky C
. The economic and societal burden of excessive daytime sleepiness in patients with obstructive sleep apnea. Sleep Med Rev. 2020; 51:101275.
DOI: 10.1016/j.smrv.2020.101275.
View
13.
Kroeger D, Bandaru S, Madara J, Vetrivelan R
. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience. 2019; 406:314-324.
PMC: 6545592.
DOI: 10.1016/j.neuroscience.2019.03.020.
View
14.
Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell T
. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004; 24(28):6291-300.
PMC: 6729542.
DOI: 10.1523/JNEUROSCI.0586-04.2004.
View
15.
Di Cristoforo A, Cerri M, Del Vecchio F, Hitrec T, Luppi M, Perez E
. Wake-sleep, thermoregulatory, and autonomic effects of cholinergic activation of the lateral hypothalamus in the rat: a pilot study. Arch Ital Biol. 2016; 153(2-3):67-76.
DOI: 10.12871/000398292015232.
View
16.
Lu J, Sherman D, Devor M, Saper C
. A putative flip-flop switch for control of REM sleep. Nature. 2006; 441(7093):589-94.
DOI: 10.1038/nature04767.
View
17.
Rosenberg R, Thorpy M, Doghramji K, Morse A
. Brain fog in central disorders of hypersomnolence: a review. J Clin Sleep Med. 2024; 20(4):643-651.
PMC: 10985301.
DOI: 10.5664/jcsm.11014.
View
18.
Herrera C, Cadavieco M, Jego S, Ponomarenko A, Korotkova T, Adamantidis A
. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 2015; 19(2):290-8.
PMC: 5818272.
DOI: 10.1038/nn.4209.
View
19.
Gompf H, Mathai C, Fuller P, Wood D, Pedersen N, Saper C
. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci. 2010; 30(43):14543-51.
PMC: 2989851.
DOI: 10.1523/JNEUROSCI.3037-10.2010.
View
20.
Gutierrez R, Lobo M, Zhang F, De Lecea L
. Neural integration of reward, arousal, and feeding: recruitment of VTA, lateral hypothalamus, and ventral striatal neurons. IUBMB Life. 2011; 63(10):824-30.
DOI: 10.1002/iub.539.
View