» Articles » PMID: 27572662

Epoxide-functionalization of Polyethyleneimine for Synthesis of Stable Carbon Dioxide Adsorbent in Temperature Swing Adsorption

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Aug 31
PMID 27572662
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

Citing Articles

Design of Ultra-Stable Solid Amine Adsorbents and Mechanisms of Hydroxyl Group-Dependent Deactivation for Reversible CO Capture from Flue Gas.

Zhao M, Huang L, Gao Y, Wang Z, Liang S, Zhu X Nanomicro Lett. 2025; 17(1):170.

PMID: 40019639 PMC: 11871205. DOI: 10.1007/s40820-025-01664-w.


Spiropyran-Incorporated Y Zeolite: A Visible-Light-Responsive System for Controllable CO adsorption.

Shi S, Ma Z, Li Y, Qi S, Sun L Chem Bio Eng. 2025; 1(9):783-789.

PMID: 39974184 PMC: 11792910. DOI: 10.1021/cbe.4c00016.


Self-Supported Branched Poly(ethylenimine) Monoliths from Inverse Template 3D Printing for Direct Air Capture.

Narayanan P, Kim S, Alhazmi D, Jones C, Lively R ACS Appl Mater Interfaces. 2025; 17(7):10696-10709.

PMID: 39931906 PMC: 11843543. DOI: 10.1021/acsami.4c20617.


Polyethyleneimine-Based Cryogels Enabling the Selective and Reversible Adsorption of Chlorine.

Lorente A, Sturm J, Kleoff M, Lorenz F, Vossnacker P, Wagner O Adv Sci (Weinh). 2024; 12(8):e2414274.

PMID: 39739596 PMC: 11848583. DOI: 10.1002/advs.202414274.


Polymer Sorbent Design for the Direct Air Capture of CO.

Robertson M, Qian J, Qiang Z ACS Appl Polym Mater. 2024; 6(23):14169-14189.

PMID: 39697843 PMC: 11650649. DOI: 10.1021/acsapm.3c03199.


References
1.
Rochelle G . Amine scrubbing for CO2 capture. Science. 2009; 325(5948):1652-4. DOI: 10.1126/science.1176731. View

2.
Sayari A, Belmabkhout Y . Stabilization of amine-containing CO(2) adsorbents: dramatic effect of water vapor. J Am Chem Soc. 2010; 132(18):6312-4. DOI: 10.1021/ja1013773. View

3.
Zhao , Feng , Huo , Melosh , Fredrickson , Chmelka . Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores . Science. 1998; 279(5350):548-52. DOI: 10.1126/science.279.5350.548. View

4.
Li W, Bollini P, Didas S, Choi S, Drese J, Jones C . Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Appl Mater Interfaces. 2010; 2(11):3363-72. DOI: 10.1021/am100786z. View

5.
Millward A, Yaghi O . Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc. 2005; 127(51):17998-9. DOI: 10.1021/ja0570032. View