Derosiere G, Shokur S, Vassiliadis P
Nat Commun. 2025; 16(1):1307.
PMID: 39900901
PMC: 11791067.
DOI: 10.1038/s41467-024-55016-0.
Yang R, Chen J, Yue S, Yu Y, Fan J, Luo Y
Neuroimage Clin. 2025; 45:103739.
PMID: 39864168
PMC: 11803893.
DOI: 10.1016/j.nicl.2025.103739.
Mueller D, Giglio E, Chen C, Holm A, Ebitz R, Grissom N
bioRxiv. 2024; .
PMID: 39484597
PMC: 11526980.
DOI: 10.1101/2024.10.23.619903.
Sugiyama T, Uehara S, Izawa J
Proc Natl Acad Sci U S A. 2024; 121(44):e2417543121.
PMID: 39441634
PMC: 11536165.
DOI: 10.1073/pnas.2417543121.
Economo M, Komiyama T, Kubota Y, Schiller J
J Neurosci. 2024; 44(40).
PMID: 39358022
PMC: 11459264.
DOI: 10.1523/JNEUROSCI.1233-24.2024.
Mapping eye, arm, and reward information in frontal motor cortices using electrocorticography in non-human primates.
Ouchi T, Scholl L, Rajeswaran P, Canfield R, Smith L, Orsborn A
bioRxiv. 2024; .
PMID: 39185198
PMC: 11343120.
DOI: 10.1101/2024.08.13.607846.
Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke.
Lee K, Barradas V, Schweighofer N
bioRxiv. 2024; .
PMID: 39005333
PMC: 11244868.
DOI: 10.1101/2024.06.28.601213.
Sensation and expectation are embedded in mouse motor cortical activity.
Holey B, Schneider D
Cell Rep. 2024; 43(7):114396.
PMID: 38923464
PMC: 11304474.
DOI: 10.1016/j.celrep.2024.114396.
Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior.
Vahidi P, Sani O, Shanechi M
Proc Natl Acad Sci U S A. 2024; 121(7):e2212887121.
PMID: 38335258
PMC: 10873612.
DOI: 10.1073/pnas.2212887121.
The role of ventral tegmental area in chronic stroke rehabilitation: an exploratory study.
Astrakas L, Elbach S, Giannopulu I, Li S, Benjafield H, Tzika A
Front Neurol. 2023; 14:1270783.
PMID: 38116106
PMC: 10728864.
DOI: 10.3389/fneur.2023.1270783.
Sensation and expectation are embedded in mouse motor cortical activity.
Holey B, Schneider D
bioRxiv. 2023; .
PMID: 37745573
PMC: 10515891.
DOI: 10.1101/2023.09.13.557633.
Increased Excitability of Layer 2 Cortical Pyramidal Neurons in the Supplementary Motor Cortex Underlies High Cocaine-Seeking Behaviors.
Huang D, Ma Y
Biol Psychiatry. 2023; 94(11):875-887.
PMID: 37330163
PMC: 10721734.
DOI: 10.1016/j.biopsych.2023.06.002.
Neural representation and modulation of volitional motivation in response to escalating efforts.
Zhang L, Liu C, Zhou X, Zhou H, Luo S, Wang Q
J Physiol. 2022; 601(3):631-645.
PMID: 36534700
PMC: 10108165.
DOI: 10.1113/JP283915.
Motivation from Agency and Reward in Typical Development and Autism: Narrative Review of Behavioral and Neural Evidence.
Valori I, Carnevali L, Mantovani G, Farroni T
Brain Sci. 2022; 12(10).
PMID: 36291344
PMC: 9599071.
DOI: 10.3390/brainsci12101411.
The reward for placebos: mechanisms underpinning placebo-induced effects on motor performance.
Brietzke C, Cesario J, Hettinga F, Pires F
Eur J Appl Physiol. 2022; 122(11):2321-2329.
PMID: 36006479
DOI: 10.1007/s00421-022-05029-8.
Local field potentials reflect cortical population dynamics in a region-specific and frequency-dependent manner.
Gallego-Carracedo C, Perich M, Chowdhury R, Miller L, Gallego J
Elife. 2022; 11.
PMID: 35968845
PMC: 9470163.
DOI: 10.7554/eLife.73155.
Neuroplasticity after upper-extremity rehabilitation therapy with sensory stimulation in chronic stroke survivors.
Schranz C, Vatinno A, Ramakrishnan V, Seo N
Brain Commun. 2022; 4(4):fcac191.
PMID: 35938072
PMC: 9351980.
DOI: 10.1093/braincomms/fcac191.
The dissociable effects of reward on sequential motor behavior.
Sporn S, Chen X, Galea J
J Neurophysiol. 2022; 128(1):86-104.
PMID: 35642849
PMC: 9291426.
DOI: 10.1152/jn.00467.2021.
Cell-type-specific responses to associative learning in the primary motor cortex.
Lee C, Harkin E, Yin X, Naud R, Chen S
Elife. 2022; 11.
PMID: 35113017
PMC: 8856656.
DOI: 10.7554/eLife.72549.
Normalization by valence and motivational intensity in the sensorimotor cortices (PMd, M1, and S1).
Yao Z, Hessburg J, Francis J
Sci Rep. 2021; 11(1):24221.
PMID: 34930930
PMC: 8688489.
DOI: 10.1038/s41598-021-03200-3.